화학공학소재연구정보센터
IEEE Transactions on Energy Conversion, Vol.32, No.3, 1117-1126, 2017
Characteristic Analysis of Subsynchronous Resonance in Practical Wind Farms Connected to Series-Compensated Transmissions
The emerging subsynchronous resonance (SSR) caused by the interaction of wind turbine generators (WTGs) with series compensation has aroused great concerns. For this particular issue, this paper is aimed to fill the gap between theoretical studies and actual observations. By analyzing the field data of 58 SSR events captured in a practical wind power system and examining the observed dynamics with previous theoretical results, the mechanism and characteristics of SSR are revealed in a more explicit and substantial way. The necessary conditions and dominant influential factors are identified and the underlying reasons are discovered. Theoretically derived as well as practically measured impedance models have demonstrated that the converter control of doubly fed induction generator (DFIG) produces negative resistance at the slip frequency and thus causes unstable SSR; while permanent magnet synchronous generators and self-excited induction generators are just passively engaged in those SSR incidents. The distribution of the oscillation frequency has also been examined with field measurements. It is discovered that WTGs at different locations participate into the same SSR mode and their frequencies are not fixed but keep changing with the time, the variation of grid topology, and the number of online generators.