Applied Surface Science, Vol.422, 828-837, 2017
Nickel phosphide nanoparticles decorated nitrogen and phosphorus co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution
The design of efficient and robust Ni2P-based hybrid catalysts for hydrogen evolution reaction (HER) is still in challenge. In this work, a hybrid catalyst composed of monodispersed Ni2P nanoparticles (NPs) and N, P co-doped porous carbon (NPPC) was synthesized through a facile thermal decomposition and used as an efficient electrocatalyst for the HER in 0.5 M H2SO4 solution. Series technologies including X-ray diffraction, Raman, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and N-2 sorption are used to characterize the as-synthesized catalysts. The electrochemisty experiments suggested that the as-synthesized Ni2P/NPPC displayed efficient electrocatalytic performance with a low onset overpotential (51 mV), small Tafel slope (74 mV dec(-1)), high exchange current density (0.12 mA cm(-2)), large electrochemical double-layer capacitance (21.97 mF cm(-2)) and high conductivity for the HER. The needed overpotentials are 159 and 184 mV to reach to the current density of 10 and 20 mA cm(-2), respectively. Simultaneously, Ni2P/NPPC also displayed good stability in acid solution. The more defects and active sites on the porous carbon which are offered by the co-doped N and P atoms as well as the synergistic effect between NPPC and Ni2P NPs are contributed to the excellent catalytic performance for HER. The current study suggests that introducing the N, P heteroatoms co-doped carbon materials to the Ni2P-based catalysts could enhance HER electrocatalytic performance efficiently. (C) 2017 Elsevier B.V. All rights reserved.
Keywords:Nickel phosphide;Nitrogen and phosphorus codoping;Porous carbon;Catalyst;Hydrogen evolution reaction