화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.101, No.19, 7165-7175, 2017
PhzA, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis in Pseudomonas chlororaphis HT66
Natural phenazines are versatile secondary metabolites that are mainly produced by Pseudomonas and Streptomyces. All phenazine-type metabolites originate from two precursors: phenazine-1-carboxylic acid (PCA) in Pseudomonas or phenazine-1,6-dicarboxylic acid (PDC) in Streptomyces and other bacteria. Although the biosynthesis of PCA in Pseudomonas has been extensively studied, the origin of PDC still remains unclear. Comparing the phenazine biosynthesis operons of different species, we found that the phzA gene was restricted to Pseudomonas in which PCA is produced. By generating phzA-inactivated mutant, we found a new compound obviously accumulated; it was then isolated and identified as PDC. Protein sequence alignment showed that PhzA proteins from Pseudomonas form a separate group that is recognized by H73L and S77L mutations. Generating mutations of L-73 into H-73 and L-77 into S-77 resulted in a significant increase in PDC production. These findings suggest that phzA may act as a shunt switch of PDC biosynthesis in Pseudomonas and distinguish the pathway producing only PCA from the pathway forming PCA plus PDC. Using real-time PCR analysis, we suggested that the phzA, phzB, and phzG genes either directly or indirectly regulate the production of PDC, and phzA plays the most significant regulatory role. This is the first description of phzA in the biosynthesis of PDC, and the first-time substantial PDC was obtained in Pseudomonas. Therefore, this study not only provides valuable clues to better understand the biosynthesis of PCA and PDC in Pseudomonas but also introduces a method to produce PDC derivatives by genetically engineered strains.