화학공학소재연구정보센터
Macromolecular Research, Vol.25, No.10, 971-975, October, 2017
Correlation of stress and optical properties in highly transparent polyimides for future flexible display
E-mail:,
High transmittance and low birefringence are desirable optical properties in polyimide films which are promising flexible substrates in next generation display devices. However, thermal processes for the fabrication of polyimide films can cause anisotropic changes in the optical properties due to its rod-like molecular structure. Here we report the changes in optical retardation in transparent fluorinated polyimide films with sub-nanometer resolution and dimensional stability induced by deformation at high temperatures. As deformation is increased, the optical retardation is changed much prominently with enhancing thermo-dimensional stability. During thermal strain, in-plane molecular orientation is preferentially improved and stress-optical coefficient that quantifies the change in out of plane optical retardation is derived to be around 6×10?6 m2/N, which is higher compared to conventional plastic optical films. The experimental findings suggest that optimized process conditions for display substrates should be determined to address both changes in the optical and thermal stabilities. We suggest that this study can be useful information for large-scale film process to be further utilized in fabrication of the transparent polyimide films.
  1. Garnier F, Hajlaoui R, Yassar A, Srivastava P, Science, 265(5179), 1684 (1994)
  2. Crawford G, Flexible Flat Panel Displays, John Wiley & Sons, New York, 2005.
  3. Lewis J, Mater. Today, 9, 38 (2006)
  4. Peet J, Heeger AJ, Bazan GC, Acc. Chem. Res., 42, 1700 (2009)
  5. Eashoo M, Shen D, Wu Z, Lee CJ, Harris FW, Cheng SZD, Polymer, 34, 3209 (1993)
  6. Feiring AE, Auman BC, Wonchoba ER, Macromolecules, 26, 2779 (1993)
  7. Jung Y, Yang Y, Kim S, Kim HS, Park T, Yoo BW, Eur. Polym. J., 49, 3642 (2013)
  8. Simone CD, Auman BC, Carcia PF, Wessel RA, U.S. Patent 7550194 (2005).
  9. Yang Y, Jung Y, Cho MD, Lee SG, Kwon S, RSC Adv., 5, 57339 (2015)
  10. Jung Y, Yang Y, Lee S, Byun S, Jeon H, Cho MD, Polymer, 59, 200 (2015)
  11. Kim G, Byun S, Yang Y, Kim S, Kwon S, Jung Y, Polymer, 68, 293 (2015)
  12. Jung Y, Song S, Kim S, Yang Y, Chae J, Park T, Cho MD, Appl. Phys. Lett., 102, 031602 (2013)
  13. Kline RJ, DeLongchamp DM, Fischer DA, Lin EK, Heeney M, McCulloch I, Toney MF, Appl. Phys. Lett., 90, 062117 (2007)
  14. Pottiger MT, Coburn JC, Edman JR, J. Polym. Sci. B: Polym. Phys., 32(5), 825 (1994)
  15. Hahn BR, Wendorff JH, Polymer, 26, 1619 (1985)
  16. Machell JS, Greener J, Contestable BA, Macromolecules, 23, 186 (1990)
  17. Ando S, Sawada T, Inoue Y, ACS Symposium Series, 579, 283 (1995)
  18. Xie K, Liu JG, Zhou HW, Zhang SY, He MH, Yang SY, Polymer, 42(17), 7267 (2001)
  19. Inoue Y, Yoshida H, Kubo H, Ozaki M, Adv. Opt. Mater., 1, 256 (2013)
  20. Baek SH, Kang JW, Li X, Lee MH, Kim JJ, Proceeding SPIE, 4991, 406 (2003)
  21. Ree M, Chu CW, Goldberg MJ, J. Appl. Phys., 75, 1410 (1994)
  22. Zhou W, Diehl C, Murray D, Koppi KA, Hahn S, Wu ST, Journal of the SID, 18, 66 (2010)
  23. Khanarian G, Opt. Eng., 40, 1024 (2001)
  24. Okura JH, Shetty S, Ramakrishnan B, Dasgupta A, Caers JFJM, Reinikainen T, Microelectronics Reliability, 40, 1173 (2000)
  25. Nysæther JB, Lundstrom P, Liu J, Hybrids Manufacturing Technology-Part A, 21, 281 (1998)