Journal of Industrial and Engineering Chemistry, Vol.55, 80-90, November, 2017
Novel designs of polycarboxylate superplasticizers for improving resistance in clay-contaminated concrete
E-mail:
Certain clays attached around the aggregates contaminate the concrete and also greatly affect the concrete workability, the mechanism of which was investigated through calculating the volume change of solid and liquid phases of concrete mixture containing clay. To minimize this detrimental effect, two novel designs based on the transfer of theory and techniques from polymer science, i.e., molecular design of polycarboxylate superplasticizer (PCE), were proposed. The one was “intercalator” synthesized via Hofmann rearrangement and cationization, and the other was “star-shaped polycarboxylate super- plasticizer (SPCE)” synthesized via a route of “core first and arm second”. The results of Infrared Spectroscopy (IR) and 1H Nuclear Magnetic Resonance (1H NMR) confirm the designed structures. The applications of these polymers in clay-contaminated cement paste and concrete were tested. The results showed that, the dispersing capacities of “Intercalator + Comb-shaped polycarboxylate superplasticizer (CPCE)” and SPCE were less affected by adding clay in both cement paste and concrete. Adsorption and Xray diffraction (XRD) experiments revealed less harmful intercalation for SPCE and preferential occupation in the interlayer space of clay for intercalator to protect other workable PCEs. It is interesting that optimizing charge characteristic and “disassembling-assembling” molecular arrangement can contribute to excellent resistance towards clay. The aim of this study is to offer two promising alternatives, which attractively provide the theoretical basis and technological application in researching advanced materials in clay-contaminated concrete.
- Yu R, Spiesz P, Brouwers HJH, Cem. Concr. Compos., 55, 383 (2015)
- Soliman AM, Nehdi ML, Cem. Concr. Compos., 46, 81 (2014)
- Jimma B E, Rangaraju PR, Constr. Build. Mater., 101, 1047 (2015)
- Felekoglu B, Sarikahya H, Constr. Build. Mater., 22, 1972 (2008)
- Papayianni I, Tsohos G, Oikonomou N, Mavria P, Cem. Concr. Compos., 27, 217 (2005)
- Liao TS, Hwang CL, Ye YS, Hsu KC, Cem. Concr. Compos., 36, 650 (2006)
- Li XK, Zheng DF, Zheng T, Lin XL, Lou HM, Qiu XQ, J. Ind. Eng. Chem., 49, 168 (2017)
- Zhao H, Wang Y, Yang Y, Shu X, Yan H, Ran Q, Appl. Surf. Sci., 417, 8 (2017)
- Zhao L, Guo X, Ge C, Li Q, Guo L, Shu X, Liu J, Compos. Part B Eng., 113, 308 (2017)
- He Y, Zhang X, Hooton RD, Constr. Build. Mater., 132, 112 (2017)
- Antoni, Halim JG, Kusuma OC, Hardjito D, Procedia Eng., 171, 752 (2017)
- Yu B, Zeng Z, Ren Q, Chen Y, Liang M, Zou H, J. Mol. Struct., 1120, 171 (2016)
- Liu X, Wang ZM, Zheng YS, Cui SP, Lan MZ, Li HQ, Zhu J, Liang X, Materials, 7, 6169 (2014)
- Jeknavorian AA, Jardine L, Ou CC, Koyata H, Folliard KJ, American Concrete Institute, Berlin, 2003, pp. 1293.
- Ng S, Plank J, Cem. Concr. Res., 42, 847 (2012)
- Lei L, Plank J, Cem. Concr. Res., 42, 1299 (2012)
- Manning D, Bergaya F, Theng BKG, Lagaly GE, Elsevier’s Science & Technology, 2007, pp. 19.
- Sakai E, Atarashi D, Daimon M, Proceedings of the 6th International Symposium on Cement & Concrete, Xian, China, 2006, pp. 1560.
- Lindgreen H, Skibsted J, Kroyer H, Jakobsen HJ, Adv. Cem. Res., 15, 103 (2003)
- Rasekh H, Rose KW, Worrall WE, Br. Ceram. Trans. J., 86, 132 (1987)
- Mandalia T, Bergaya F, J. Phys. Chem. Solids, 67, 837 (2006)
- Gay-Duchosal M, Powell DH, Lechner RE, Ruffle B, Physica B, B276-27, 234 (2000)
- Ilg M, Plank J, Cem. Concr. Res., 79, 123 (2016)
- Wei F, Stoffelbach F, Rieger J, Regnaud L, Vichot A, Bresson B, Lequeux N, Cem. Concr. Res., 42, 166 (2012)
- Lei L, Plank J, Cem. Concr. Res., 42, 118 (2012)
- Liu X, Wang ZM, Zhu J, Zheng YS, Cui SP, Lan MZ, Li HQ, Colloids Surf. A: Physicochem. Eng. Asp., 448, 119 (2014)
- Wang W, Zheng B, Feng Z, Deng Z, Fu L, J. Adv. Concr. Technol., 10, 323 (2012)
- Ait-Akbour R, Boustingorry P, Leroux F, Leising F, Taviot-Gueho C, J. Colloid Interface Sci., 437, 227 (2015)
- Chan WWJ, Wu CML, Cem. Concr. Res., 30, 865 (2000)
- Xu H, Sun S, Yu Q, Wei J, Polym. Compos. (2016), doi:http://dx.doi.org/10.1002/pc.23993.
- Lei L, Plank J, Cem. Concr. Res., 60, 1 (2014)
- Lei L, Plank J, Ind. Eng. Chem. Res., 53(3), 1048 (2014)
- Liu X, Wang ZM, Cui SP, US patent, 8,912,299 B2.
- GB/T 20973-2007, Bentonite, 2007 from http://cx.spsp.gov.cn/.
- GB/T 8077-2012, Method for testing uniformity of concrete admixture, 2012 from http://cx.spsp.gov.cn/.
- GB/T 50080-2002, Standard for test method of performance on ordinary fresh concrete, 2002 from http://cx.spsp.gov.cn/.
- Plank J, Sachsenhauser B, Reese JD, Cem. Concr. Res., 40, 699 (2010)
- Turkoz1 M, Tosun H, Sci. Res. Essays, 6, 1780 (2011)
- Hang PT, Brindley GW, Clay Clay Min., 18, 203 (1970)
- Zheng HL, Ma JY, Zhu CJ, Zhang Z, Liu LW, Sun YJ, Tang XM, Sep. Purif. Technol., 123, 35 (2014)
- Plank J, Yu B, Appl. Clay Sci., 47, 378 (2010)
- Zhang MH, Sisomphon K, Ng TS, Sun DJ, Constr. Build. Mater., 24, 1700 (2010)
- Rathfon JM, Tew GN, Polymer, 49(7), 1761 (2008)
- Pretsch E, Buhlmann P, Badertscher M, Structure Determination of Organic Compounds: Tables of Spectral Data, Springer-Verlag, 2009.
- Suter JL, Coveney PV, Soft Matter, 5, 2239 (2009)
- Aggarwal SL, Polymer, 17, 938 (1976)
- Pourchet S, Liautaud S, Rinaldi D, Pochard I, Cem. Concr. Res., 42, 431 (2012)
- Svensson PD, Hansen S, Appl. Clay Sci., 48, 358 (2010)
- Kwolek T, Hodorowicz M, Stadnicka K, Czapkiewicz J, J. Colloid Interface Sci., 264, 12 (2003)
- Zhou LM, Chen H, Jiang XH, Lu F, Zhou YF, Yin WM, Ji XY, J. Colloid Interface Sci., 332(1), 16 (2009)
- Shen ZQ, Simon GP, Cheng YB, Polymer, 43(15), 4251 (2002)
- Long B, Wang CA, Lin W, Huang Y, Sun J, Compos. Sci. Technol., 67, 2770 (2007)
- Zhang JP, Wang AQ, React. Funct. Polym., 67(8), 737 (2007)
- Hunter RJ, Zeta Potential in Colloid Science, Academic Press, London, 1981.
- O’Brien RW, Midmore BR, Lamb A, Hunter RJ, Faraday Discuss., 90, 301 (1990)