화학공학소재연구정보센터
Macromolecular Research, Vol.25, No.9, 905-912, September, 2017
Hydroxyapatite Nucleation and Growth on Collagen Electrospun Fibers Controlled with Different Mineralization Conditions and Phosvitin
E-mail:
In a tenfold-concentrated simulated body fluid, a strategy for rapid depositionof a biomimetic calcium phosphate layer on the scaffolds of electrospun collagen nanofiber membranes was developed. The aim of this study was to explore the effects of mineralization conditions and phosvitin (PV) on hydroxyapatite nucleation and growth. The mineralization model, the pH of the environment, and the deposition time were optimized. Scanning electron microscopy (SEM) images demonstrated that homogeneous and well-crystallized inorganic mineral layers were generated in the dynamic mineralization model system after incubating 3 h at pH 5.7. PV, which possesses the highest level of phosphorylation among egg proteins, was used as a model protein to investigate the contribution of PV in the mineralization process. The morphological structure and composition of the collagen/calcium phosphate composite nanofibers were also characterized by energy dispersive spectroscopy, scanning photoelectron spectrometer, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. XRD results showed the transformation process of mineralization materials from dicalcium phosphate dihydrate (DCPD) to HA through the changes of characteristic peaks at approximately 11° of DCPD and 31.8° of HA. 1.0 mg/mL. Phosvitin significantly promoted the phase transformation from DCPD to hydroxyapatite. High performance liquid chromatography results indicated that PV induced the mineralization rather than being the part of the hydroxyapatite. The minerals formed on electrospun collagen nanofiber membranes were identified to be from hydroxyapatite. These findings extended the potential application field of PV to biomimetic material.
  1. Olszta MJ, Cheng X, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB, Mater. Sci. Eng. R-Rep., 58, 77 (2007)
  2. George A, Veis A, Chem. Rev., 108(11), 4670 (2008)
  3. Cai Y, Yao J, Nanoscale, 2, 1842 (2010)
  4. Gajjeraman S, Narayanan K, Hao J, Qin C, George A, J. Biol. Chem., 282, 1193 (2007)
  5. Venugopal J, Prabhakaran MP, Zhang Y, Low S, Choon AT, Ramakrishna S, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 368, 2065 (2010)
  6. Chen L, Jacquet R, Lowder E, Landis WJ, Bone, 71, 7 (2015)
  7. Hutmacher DW, Biomaterials, 21, 2529 (2000)
  8. Bleek K, Taubert A, Acta Biomater., 9, 6283 (2013)
  9. Nudelman F, Lausch AJ, Sommerdijk NAJM, Sone ED, J. Struct. Biol., 183(2), 258 (2013)
  10. Kretlow JD, Mikos AG, Tissue Eng., 13, 927 (2007)
  11. Cui W, Li X, Xie C, Zhuang H, Zhou S, Weng J, Biomaterials, 31, 4620 (2010)
  12. Pham QP, Sharma U, Mikos AG, Tissue Eng., 12, 1197 (2006)
  13. Khadka DB, Haynie DT, Nanomedicine, 8, 1242 (2012)
  14. Liang D, Hsiao BS, Chu B, Adv. Drug Deliv. Rev., 59, 1392 (2007)
  15. Hofman K, Tucker N, Stanger J, Staiger M, Marshall S, Hall B, J. Mater. Sci., 47(3), 1148 (2012)
  16. Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM, J. Biomed. Mater. Res., 72, 156 (2005)
  17. Chicatun F, Pedraza CE, Ghezzi CE, Marelli B, Kaartinen MT, McKee MD, Nazhat SN, Biomacromolecules, 12(8), 2946 (2011)
  18. Dunn MG, Silver FH, Connect. Tissue Res., 12, 59 (1983)
  19. Cisneros DA, Hung C, Franz CA, Muller DJ, J. Struct. Biol., 154(3), 232 (2006)
  20. Landis WJ, Silver FH, Cells Tissues Organs, 189, 20 (2008)
  21. Liu T, Teng WK, Chan BP, Chew SY, J. Biomed. Mater. Res., 95, 276 (2010)
  22. Jiang Q, Reddy N, Zhang S, Roscioli N, Yang Y, J. Biomed. Mater. Res., 101, 1237 (2013)
  23. Sisson K, Zhang C, Farach-Carson MC, Chase DB, Rabolt JF, Biomacromolecules, 10(7), 1675 (2009)
  24. Kokubo T, Takadama H, Biomaterials, 27, 2907 (2006)
  25. Tas AC, Bhaduri SB, J. Mater. Res., 19, 2742 (2004)
  26. Cai Q, Xu QQ, Feng QF, Cao XY, Yang XP, Deng XL, Appl. Surf. Sci., 257(23), 10109 (2011)
  27. Andric T, Wright LD, Freeman JW, J. Biomater. Sci.-Polym. Ed., 22, 1535 (2011)
  28. Yang F, Wolke JGC, Jansen JA, Chem. Eng. J., 137(1), 154 (2008)
  29. Wang DB, Ye J, Hudson SD, Scott KCK, Lin-Gibson S, J. Colloid Interface Sci., 417, 244 (2014)
  30. Veis A, Dorvee JR, Calcif. Tissue Int., 93, 307 (2013)
  31. Staines KA, MacRae VE, Farquharson C, J. Endocrinol., 214, 241 (2012)
  32. Hunter GK, O'Young J, Grohe B, Karttunen M, Goldberg HA, Langmuir, 26(24), 18639 (2010)
  33. Alvares K, Connect. Tissue Res., 55, 34 (2014)
  34. Samaraweera H, Zhang WG, Lee EJ, Ahn DU, J. Food Sci., 76, R143 (2011)
  35. Huopalahti R, Lopez-Fandino R, Anton M, Schade R, Eds., Bioactive Egg Compounds, Springer, Heidelberg, 2007.
  36. Glimcher MJ, Anat. Rec., 224, 139 (1989)
  37. Ito S, Motai F, Mizoguchi I, Saito T, J. Biomed. Mater. Res., 100, 2760 (2012)
  38. Kobayashi N, Onuma K, Oyane A, Yamazaki A, Key Eng. Mater., 254, 537 (2004)
  39. Onuma K, J. Phys. Chem. B, 109(16), 8257 (2005)
  40. Saito T, Arsenault A, Yamauchi M, Kuboki Y, Crenshaw M, Bone, 21, 305 (1997)
  41. Fan J, Zhang Y, Ji N, Duan X, Liu H, Wang J, Jiang H, Cryst. Eng. Commun., 17, 5372 (2015)
  42. Grohmann S, Rothe H, Eisenhuth S, Hoffmann C, Liefeith K, Biointerphases, 6, 54 (2011)
  43. Abdelkebir K, Morin-Grognet S, Gaudiere F, Coquerel G, Labat B, Atmani H, Ladam G, Acta Biomater., 8, 3419 (2012)
  44. Abdelkebir K, Gaudiere F, Morin-Grognet S, Coquerel G, Atmani H, Labat B, Ladam G, Langmuir, 27(23), 14370 (2011)
  45. Zhang XW, Geng F, Huang X, Ma MH, J. Cryst. Growth, 409, 44 (2015)
  46. Li C, Geng F, Huang X, Ma M, Zhang X, Poult. Sci., 93, 3065 (2014)
  47. Liu J, Czernick D, Lin SC, Alasmari A, Serge D, Salih E, Dev. Biol., 381, 256 (2013)
  48. Naoya T, Kenichi T, Ryo M, Yumiko I, Yuji H, Tatsuya S, Yusuke H, J. Artif. Organs, 19, 141 (2016)
  49. Full SM, Delman C, Gluck J, Abdmaulen R, Shemin R, Heydarkhan-Hagvall S, J. Biomed. Mater. Res., 103, 39 (2015)
  50. Zhang X, Kyle CL, Goldberg HA, J. Sep. Sci., 34, 3295 (2011)
  51. Carlisle C, Coulais C, Guthold M, Acta Biomater., 6, 2997 (2010)
  52. Liao S, Jaswal VS, Kaur G, Simpson TW, Banipal PK, Banipal TS, Possmayer F, Petersen NO, J. Mech. Behav. Biomed. Mater., 1, 252 (2008)
  53. Li Y, Leng Y, Lu X, Ren F, Biomacromolecules, 13, 49 (2011)
  54. Zhang LJ, Chu X, Li L, Xu X, Tang R, Mater. Lett., 58, 719 (2004)
  55. Zhang M, Liu W, Li G, Food Chem., 115, 826 (2009)
  56. Usha R, Sreeram KJ, Rajaram A, Colloids Surf. B: Biointerfaces, 90, 83 (2012)
  57. Cai Q, Feng, Liu F, Yang X, Mater. Lett., 91, 275 (2013)
  58. Kim Y, Choi M, Mater. Technol., 28, 324 (2013)
  59. Silva C, Pinheiro A, Miranda M, Goes J, Sombra A, Solid State Sci., 5, 553 (2003)
  60. Huh HW, Zhao L, Kim SY, Carbohydr. Polym., 126, 130 (2015)
  61. LeGeros RZ, Monogr. Oral Sci., 15, 1 (1990)
  62. Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ, Biomaterials, 27, 4661 (2006)
  63. Xie J, Zhong S, Ma B, Shuler FD, Lim CT, Acta Biomater., 9, 5698 (2013)
  64. Gower LB, Chem. Rev., 108(11), 4551 (2008)
  65. Nudelman F, Bomans PH, George A, Sommerdijk NA, Faraday Discuss., 159, 357 (2012)
  66. Prescott B, Renugopalakrishnan V, Glimcher M, Bhushan A, Thomas G, Biochemistry, 25, 2792 (1986)
  67. Huq NL, Cross KJ, Ung M, Reynolds EC, Arch. Oral Biol., 50, 599 (2005)