화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.54, 324-331, October, 2017
Studies on the correlation between nanostructure and pore development of polymeric precursor-based activated hard carbons: II. Transmission electron microscopy and Raman spectroscopy studies
E-mail:
In a previous study, we reported on activated polymer-based hard carbons (APHCs), which were prepared using CO2 activation and characterized according to activation conditions, including textural properties such as specific surface area and pore volume. This paper was focused on the correlation between nanostructure and pore development of APHCs by using Cs-corrected-field emission transmission electron microscopy (Cs-corrected FE-TEM) and Raman spectroscopy to supplement the in-depth explanation. In the TEM analysis, the APHCs were observed to contain slit-shaped pores (SPs) and little cylindrical pores (CPs). And Raman spectroscopy was used in order to determine the degree of development of the crystal size (La) in the APHCs. The size of La increased with increasing activation time until it was nearly 3 nm. These small crystallites might cause the SPs development, resulting in the high micropore volume of the APHCs. From a result of Raman analysis, it was confirmed that the La value and the ratio of ID/IG value were in a proportional relation. The reason for this relation is that the La value has grown up to about 3 nm, which is consistent with the Ferrari equation.
  1. Yang SC, Choi JY, Yeo JG, Jeon SI, Park RH, Kim DK, Environ. Sci. Technol., 50, 5892 (2016)
  2. Hatzell KB, Boota M, Kurnbur EC, Gogotsi Y, J. Electrochem. Soc., 162(5), A5007 (2015)
  3. Yadav SK, Kumar R, Sundramoorthy AK, Singh RK, Koo CM, R. Soc Chem., 6, 52945 (2016)
  4. Kim JA, Park IS, Seo JH, Trans. Electr. Electron. Mater., 15, 81 (2014)
  5. Islam MS, Gharehkhani S, Afifi ABM, Ang BC, Carbon Lett., 20, 1 (2016)
  6. Park MS, Lee SM, Jung MJ, Kim HG, Lee YS, Carbon Lett., 20, 19 (2016)
  7. Zhang LL, Xiong ZG, Zhao XS, J. Power Sources, 222, 326 (2013)
  8. Liu Y, Cai X, Shi W, Mater. Lett., 172, 72 (2016)
  9. Zheng CL, Zhang JL, Zhang Q, You B, Chen GL, Electrochim. Acta, 152, 216 (2015)
  10. Wang H, Casalongue HS, Liang Y, Dai H, JACS, 132, 7472 (2010)
  11. Wu C, Cai JJ, Zhang QB, Zhou X, Zhu Y, Li LJ, Shen PK, Zhang KL, Electrochim. Acta, 169, 202 (2015)
  12. Heo YJ, Le MUY, Park SJ, Carbon Lett., 18, 62 (2016)
  13. Xiao L, Cao Y, Henderson WA, Sushko ML, Shao Y, Xiao J, Wang W, Engelhard MH, Nie Z, Liu J, Nano Energy, 19, 279 (2016)
  14. Fan KL, Tian YH, Zhang XJ, Tan JC, J. Electroanal. Chem., 760, 80 (2016)
  15. Lee HM, Kim HG, An KH, Kim BJ, Carbon Lett., 15, 71 (2014)
  16. Lee HM, Kim HG, Kang SJ, Park SJ, An KH, Kim BJ, J. Ind. Eng. Chem., 21, 736 (2015)
  17. Lian F, Xing BS, Zhu LY, J. Colloid Interface Sci., 360(2), 725 (2011)
  18. Lian F, Chang C, Du Y, Zhu L, Xing B, Liu C, J. Environ. Sci., 24, 1549 (2012)
  19. Isaeva I, Salitra G, Soffer A, Cohen YS, Aurbach D, Fischer J, J. Power Sources, 199-121, 28 (2003)
  20. Yang ZX, Xia YD, Zhu YQ, Mater. Chem. Phys., 141(1), 318 (2013)
  21. Yenisoy-Karakas S, Aygun A, Gunes M, Tahtasakal E, Carbon, 42, 477 (2004)
  22. Yeon SH, Osswald S, Gogotsi Y, Singer JP, Simmons JM, Fischer JE, Lillo-Rodenas MA, Linares-Solanod A, J. Power Sources, 191(2), 560 (2009)
  23. Py X, Guillot A, Cagnon B, Carbon, 42, 1743 (2004)
  24. Kaneko K, Ishii C, Ruike M, Kuwabara H, Carbon, 30, 1075 (1992)
  25. Huang Y, Young RJ, Carbon, 33, 97 (1995)
  26. Kim BJ, Park SJ, Int. J. Hydrog. Energy, 36(1), 648 (2011)
  27. Yoshizawa N, Yamada Y, Shiraishi M, J. Mater. Sci., 33(1), 199 (1998)
  28. Yoshizawa N, Maruyama K, Yamada Y, Zielinska-Blajet M, Fuel, 79, 1461 (2000)
  29. Ryu Z, Rong H, Zheng J, Wang M, Zhang B, Carbon, 40, 1131 (2002)
  30. Mays T, Howell J, King L, McEnaney B, Edie D, Carbon, 95, 510 (1995)
  31. Fryer JR, Carbon, 19, 431 (1981)
  32. Huttepain M, Oberlin A, Carbon, 28, 103 (1990)
  33. Chang Q, Liu T, Cal X, Carbon, 95, 514 (1995)
  34. Baek J, Lee HM, Roh JS, Lee HS, Kang HS, Kim BJ, Microporous Mesoporous Mater., 219, 258 (2016)
  35. Naderi M, Prog. Filtr. Sep. 585 (2015).
  36. Dollimore D, Spooner P, Turner A, Surf. Technol., 4, 121 (1976)
  37. Villarroel-Rocha J, Barrera D, Sapag K, Microporous Mesoporous Mater., 200, 68 (2014)
  38. Horvath G, Kawazoe K, Dpt. Chem. Eng., 16, 470 (1983)
  39. Evans R, Tarazona P, Phys. Rev. Lett., 52, 557 (1984)
  40. Roh JS, Korean J. Mater. Res., 13(11), 742 (2003)
  41. Brame EG, Grasselli JG, et al., Infrared and Raman Spectroscopy, Marcel Dekker, New York, 1977.
  42. Matthews MJ, Pimenta MA, Dresselhaus G, Dresselhaus MS, et al., Phys. Rev. B, 59(10), 6585 (1999)
  43. Angoni K, J. Mater. Sci., 33(14), 3693 (1998)
  44. Vidano RP, Fishbach DB, Willis LJ, Loehr TM, Solid State Commun., 39, 341 (1981)
  45. Baranov AV, Bekhterev AN, Bobovich YS, Petrov VI, Opt. Spectrosc., 62, 612 (1987)
  46. Pocsik I, Hundhausen M, Koos M, Ley L, J. Non-Cryst. Solids, 227-230, 1083 (1998)
  47. Lin-Vien D, Colthurp NB, Fateley WG, Grasselli JG, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic, New York, 1991.
  48. Thomsen C, Reich S, Phys. Rev. Lett., 85, 5214 (2000)
  49. Li F, Lannin JS, Appl. Phys. Lett., 61, 2116 (1992)
  50. Lopinski GP, Merkulov VI, Lannin JS, Appl. Phys. Lett., 69, 3348 (1996)
  51. Robertson J, O’Reilly EP, Phys. Rev. B, 35, 2946 (1987)
  52. Robertson J, Adv. Phys. Org. Chem., 35, 317 (1986)
  53. Ferrari AC, Robertson J, Phys. Rev. B, 61, 14095 (2000)
  54. Tuinstra F, Koenig JL, J. Chem. Phys., 53(3), 1126 (1970)
  55. Pesin LA, J. Mater. Sci., 37(1), 1 (2002)
  56. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH, ACS Nano, 3(9), 2653 (2009)
  57. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R, Nano Lett., 8(1), 36 (2008)
  58. Knight DS, White WB, J. Mater. Res., 4(2), 385 (1989)
  59. Wang Y, Alsmeyer DC, McCreery RL, Chem. Mater., 2, 557 (1990)
  60. Nikiel L, Jagodzinski PW, Carbon, 31, 1313 (1993)
  61. Gruber T, Zerda TW, Carbon, 32, 1377 (1994)
  62. Jones SP, Fain CC, Edie DD, Carbon, 35, 1533 (1997)
  63. Johnson CA, Patrick JW, Thomas KM, Fuel, 65, 1284 (1986)
  64. Mabuchi A, Tokumitsu K, Fujimoto H, Kasuh T, J. Electrochem. Soc., 142(4), 1041 (1995)
  65. Paris O, Zollfrank C, Zickler GA, Carbon, 43, 53 (2005)
  66. Kercher AK, Nagle DC, Carbon, 41, 15 (2003)