- Previous Article
- Next Article
- Table of Contents
Macromolecular Research, Vol.25, No.8, 767-771, August, 2017
Dynamics of Cellulose Nanocrystals in the Presence of Hexadecyltrimethylammonium Bromide
E-mail:
A dynamic light scattering (DLS) study was performed to investigate the interactions of maize straw cellulose nanocrystals (CNC) with the cationic surfactant hexadecyltrimethylammonium bromide (CTAB). Phase analysis light scattering (which gives access to zeta potential (ζ) and electrical conductance) technique was used with the aim to obtain additional information. Zeta potential behavior demonstrated the colloidal systems are stable. By electrical conductance data, it was verified that the process of formation of micelles is thermodynamically spontaneous. Dynamic light scattering was shown to be very useful to find the optimum hydrolysis time so as to obtain well dispersed and more isolated nanocrystals. In the presence of the cationic surfactant CTAB, the formation of micelles and aggregates CNC/ CTAB were well identified by DLS showing that the dynamics of cellulose nanocrystals in aqueous suspensions is strongly affected by the surfactant.
Keywords:cellulose nanocrystals;hydrolysis time;maize straw;light scattering;cationic surfactant;hexadecyltrimethylammonium bromide;micelles.
- Lin N, Dufresne A, Eur. Polym. J., 59, 302 (2014)
- Cho SY, Yun YS, Jin HJ, Macromol. Res., 22(7), 753 (2014)
- Rehman N, Miranda MIG, Rosa SML, Bica CID, Chinese J. Polym. Sci., 34, 1324 (2016)
- Kaushik M, Moores A, Green Chem., 18, 622 (2016)
- Rehman N, Miranda MIG, Rosa SML, Pimentel DM, Nachtigall SMB, Bica CID, J. Polym. Environ., 22, 252 (2014)
- Wang B, Sain M, Compos. Sci. Technol., 67, 2521 (2007)
- Khaliq Z, Kim BC, Macromol. Res., 24(5), 463 (2016)
- Dufresne A, Paillet M, Putaux JL, Canet R, Carmona F, Delhaes P, Cui S, J. Mater. Sci., 37, 3015 (2002)
- Kvien I, Tanem BS, Oksman K, Biomacromolecules, 6(6), 3160 (2005)
- Claesson PM, Kjellin M, Rojas OJ, Stubenrauch C, Phys. Chem. Chem. Phys., 47, 5501 (2006)
- Peng B, Han X, Liu H, Berry RC, Tam KC, Colloids Surf. A: Physicochem. Eng. Asp., 421, 142 (2013)
- Dhar N, Au D, Berry DRC, Tam KC, Colloids Surf. A: Physicochem. Eng. Asp., 415, 310 (2012)
- Hu Z, Ballinger S, Pelton R, Cranston ED, J. Colloid Interface Sci., 439, 139 (2015)
- Kaboorani A, Riedl B, Ind. Crop. Prod., 65, 45 (2015)
- Broersma S, J. Chem. Phys., 74, 6989 (1981)
- Everett DH, Basic Principles of Colloid Science, The Royal Society of Chemistry, Cambridge, 1988.
- Boluk Y, Danumah C, J. Nanopart. Res., 16, 2174 (2014)
- Martins RM, Silva CA, Becker CM, Samios D, Christoff M, Bica CID, Colloid Polym. Sci., 284, 1353 (2006)
- Stepanek P, Tuzak Z, Kadlec P, Kriz J, Macromolecules, 40(6), 2165 (2007)
- Bibi I, Khan A, Rehman N, Pervaiz S, Mahmood K, Siddiq M, J. Dispersion Sci. Technol., 33, 792 (2012)
- Rehman N, Khan A, Bibi I, Bica ICID, Siddiq M, J. Dispersion Sci. Technol., 34, 1202 (2013)
- Leite RCC, Moore RS, Porto SPS, J. Chem. Phys., 40, 3741 (1964)
- Schillen K, Brown W, Johnsen RM, Macromolecules, 27(17), 4825 (1994)
- Shaw DJ, Introduction to Colloid and Surface Chemistry, 4th ed., Butterworth-Heinemann, Oxford, 1992.
- Tschamutter WW, Appl. Opt., 40, 3995 (2001)
- Teodoro KBR, Polimeros, 21, 280 (2011)
- Jackson JK, Letchford K, Wasserman BZ, Ye L, Ye WL, Hamad WY, Burt HM, Int. J. Nanomed., 6, 321 (2011)
- Lee JN, Moroi Y, J. Colloid Interface Sci., 273(2), 645 (2004)
- Ray GB, Chakraborty I, Ghosh S, Moulik SP, Palepu R, Langmuir, 21(24), 10958 (2005)
- Maiti K, Chakraborty I, Bhattacharya SC, Panda AK, Moulik SP, J. Phys. Chem. B, 111(51), 14175 (2007)
- Martins RM, Becker CM, Samios D, Bica CID, Macromol. Symp., 245, 287 (2006)