화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.29, No.3, 229-237, August, 2017
Simulating deposition of high density tailings using smoothed particle hydrodynamics
E-mail:
Tailings are a slurry of silt-sized residual material derived from the milling of rock. High density (HD) tailings are tailings that have been sufficiently dewatered to a point where they exhibit a yield stress upon deposition. They form gently sloped stacks on the surface when deposited; this eliminates or minimizes the need for dams or embankments for containment. Understanding the flow behaviour of high density tailings is essential for estimating the final stack geometry and overall slope angle. This paper focuses on modelling the flow behaviour of HD tailings using smoothed particle hydrodynamics (SPH) method incorporating a ‘bi-viscosity’ model to simulate the non-Newtonian behaviour. The model is validated by comparing the numerical results with bench scale experiments simulating single or multi-layer deposits in two-dimensions. The results indicate that the model agreed fairly well with the experimental work, excepting some repulsion of particles away from the bottom boundary closer to the toe of the deposits. Novel aspects of the work, compared to other simulation of Bingham fluids by SPH, are the simulation of multilayer deposits and the use of a stopping criteria to characterize the rest state.
  1. Beverly CR, Tanner R, J. Non-Newton. Fluid Mech., 42, 85 (1992)
  2. Capone T, Panizzo A, Monaghan JJ, J. Hydraul. Res., 48, 80 (2010)
  3. Colagrossi A, Landrini M, J. Comput. Phys., 191, 448 (2003)
  4. Ellero M, Kroger M, Hess S, J. Non-Newton. Fluid Mech., 105(1), 35 (2002)
  5. Fan XJ, Tanner RI, Zheng R, J. Non-Newton. Fluid Mech., 165(5-6), 219 (2010)
  6. Fang JN, Owens RG, Tacher L, Parriaux A, J. Non-Newton. Fluid Mech., 139(1-2), 68 (2006)
  7. Fitton TG, Chryss AG, Bhattacharya SN, Int. J. Min. Reclam. Environ., 20, 181 (2006)
  8. Fourtakas G, Rogers B, Adv. Water Resour., 92, 186 (2016)
  9. Gawu SKY, Fourie AB, Can. Geotech. J., 41, 39 (2004)
  10. Ghaitanellis A, Violeau D, Leroy A, Joly A, Ferrand M, 2016, Liege, Belgium, London, 672-677.
  11. Gingold RA, Monaghan JJ, Mon. Not. Roy. Astron. Soc., 181, 375 (1977)
  12. Gomez-Gesteira M, Rogers BD, Dalrymple RA, Crespo AJC, Narayanaswamy M, 2010, User guide for the SPHysics code v2.0., SPHysics (http://www.sphysics.org).
  13. Henriquez J, Simms P, Miner. Eng., 22(2), 128 (2009)
  14. Hosseini SM, Manzari MT, Hannani SK, Int. J. Numer. Methods Eng., 17, 715 (2007)
  15. Kam S, Girard J, Hmidi N, Mao Y, Longo S, 2011, Perth, Australia, 225-236.
  16. Khanpour M, Zarrati AR, Kolahdoozan M, Shakibaeinia A, Amirshahi SM, Comput. Fluids, 129, 67 (2016)
  17. Komatina D, Jovanovic M, J. Hydraul. Res., 35, 579 (1997)
  18. Liu KF, Mei CC, J. Non-Newton. Fluid Mech., 207, 505 (1989)
  19. McPhail GI, 2008, Perth, Australia, 179-185.
  20. Mizani S, Simms P, Miner. Eng., 98, 40 (2016)
  21. Mizani S, He X, Simms P, J. Non-Newton. Fluid Mech., 198, 59 (2013)
  22. Monaghan JJ, J. Comput. Phys., 110, 399 (1994)
  23. Monaghan JJ, Rep. Prog. Phys., 68, 1703 (2005)
  24. Monaghan JJ, Annu. Rev. Fluid Mech., 44, 323 (2012)
  25. Robinsky EI, 1978, Denver, U.S., 75-92.
  26. Shao S, Lo EYM, Adv. Water Resour., 26, 787 (2003)
  27. Shuttleworth JA, Thomson BJ, Wates JA, 2005, Santiago, Chile, 207-218.
  28. Simms P, Williams M, Fitton T, Mcphail G, 2011, Perth, Australia, 323-338.
  29. Wang W, Chen G, Han Z, Zhou S, Zhang H, Jing P, Nat. Hazards, 81, 1981 (2016)
  30. Xu XY, Deng FA, 2016, Chengdu, China, 20-29.
  31. Yuhi M, Mei CC, J. Non-Newton. Fluid Mech., 519, 337 (2004)
  32. Zhu HN, Martys NS, Ferraris C, De Kee D, J. Non-Newton. Fluid Mech., 165(7-8), 362 (2010)