화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.53, 375-385, September, 2017
Chemical processing strategies to obtain sporopollenin exine capsules from multi-compartmental pine pollen
E-mail:,
Pine pollen is widely used in traditional Chinese medicine and has been consumed as a food product for thousands of years. Owing to wind pollination, its pollen grains are composed of a sporoplasmic central cavity along with two empty air sac compartments. While this architectural configuration is evolutionarily optimized for wind dispersal, such features also lend excellent potential for encapsulating materials, especially in the context of preparing sporopollenin exine capsules (SECs). Herein, we systematically evaluated one-pot acid processing methods in order to generate pine pollen SECs that support compound loading. Morphological properties of the SECs were analysed by scanning electron microscopy (SEM) and dynamic imaging particle analysis (DIPA), and protein removal was evaluated by CHN elemental analysis and confocal laser scanning microscopy (CLSM). It was identified that 5-h acidolysis with 85% w/v phosphoric acid at 70 °C yielded an optimal balance of high protein removal and preservation of microcapsule architecture, while other processing methods were also feasible with an additional enzymatic step. Importantly, the loading efficiency of the pine pollen SECs was three times greater than that of natural pine pollen, highlighting their potential for microencapsulation. Taken together, our findings outline a successful strategy to prepare intact pine pollen SECs and demonstrate for the first time that SECs can be prepared from multi-compartmental pollen capsules, opening the door to streamlined processing approaches to utilize pine pollen microcapsules in industrial applications.
  1. Sridhar R, Lakshminarayanan R, Madhaiyan K, Barathi VA, Lim KHC, Ramakrishna S, Chem. Soc. Rev., 44, 790 (2015)
  2. Adhikari MP, Adhikari R, Shrestha RG, Rajendran R, Adhikari L, Bairi P, Pradhananga RR, Shrestha LK, Ariga K, Bull. Chem. Soc. Jpn., 88, 1108 (2015)
  3. Su TR, Liao ZJ, Lu MC, Wu YJ, Su JH, Bull. Chem. Soc. Jpn., 88, 176 (2014)
  4. Govindarajan M, Benelli G, RSC Adv., 6, 59021 (2016)
  5. Scott R, Pollen Exine.The Sporopollenin Enigma and The Physics of Pattern, Cambridge University Press, 1994, pp. 49.
  6. Wiermann R, Gubatz S, Int. Rev. Cytol., 140, 35 (1992)
  7. Wodehouse RP, Pollen Grains. Their Structure, Identification and Significance in Science and Medicine, Mc Graw-Hill Publishing Co. Ltd., London, 1935.
  8. Bedinger P, Plant Cell, 4, 879 (1992)
  9. Brooks J, Shaw G, Grana, 17, 91 (1978)
  10. Wiermann R, Ahlers F, Schmitz-Thom I, Biopolym. Online (2001).
  11. Brooks J, Shaw G, Nature, 219, 532 (1968)
  12. Brooks J, Shaw G, Pollen. Development and Physiology, Butterworth & Co. Ltd., 1971.
  13. Dominguez E, Mercado JA, Quesada MA, Heredia A, Sexual Plant Reprod., 12, 171 (1999)
  14. Zetzsche F, Kalin O, Helv. Chim. Acta, 15, 412 (1932)
  15. Amer MS, Tawashi R, Modified pollen grains for delivering biologically active substances to plants and animals, Google Patents, 1991.
  16. Amer MS, Tawashi R, Drug loaded pollen grains with an outer coating for pulsed delivery, Google Patents, 1994.
  17. Couderchet M, chmalfuß J, Boger P, Pestic. Biochem. Physiol., 55, 189 (1996)
  18. Dominguez E, Mercado JA, Quesada MA, Heredia A, Grana, 37, 93 (1998)
  19. Erdtman G, Svensk Bot. Tidskr., 54, 561 (1960)
  20. Espelie KE, Loewus FA, Pugmire RJ, Woolfenden WR, Baldi BG, Given PH, Phytochemistry, 28, 751 (1989)
  21. Hesse M, Waha M, Plant Syst. Evol., 163, 147 (1989)
  22. Zetzsche F, Huggler K, Eur. J. Org. Chem., 461, 89 (1928)
  23. Zetzsche F, Kalin O, Helv. Chim. Acta, 14, 517 (1931)
  24. Zetzsche F, Kalt P, Liechti J, Ziegler E, Journal fur Praktische Chemie, 148, 267 (1937)
  25. Zetzsche F, Vicari H, Helv. Chim. Acta, 14, 62 (1931)
  26. Atwe SU, Ma Y, Gill HS, J. Control. Release, 194, 45 (2014)
  27. Wang LL, Jackman JA, Ng WB, Cho NJ, Adv. Funct. Mater., 26(47), 8623 (2016)
  28. Wang XX, Tian K, Li HY, Cai ZX, Guo X, RSC Adv., 5, 29428 (2015)
  29. Paunov VN, Mackenzie G, Stoyanov SD, J. Mater. Chem., 17, 609 (2007)
  30. Alshehri SM, Al-Lohedan HA, Chaudhary AA, Al-Farraj E, Alhokbany N, Issa Z, Alhousine S, Ahamad T, Eur. J. Pharm. Sci., 88, 158 (2016)
  31. Diego-Taboada A, Beckett ST, Atkin SL, Mackenzie G, Pharmaceutics, 6, 80 (2014)
  32. Diego-Taboada A, Maillet L, Banoub JH, Lorch M, Rigby AS, Boa AN, Atkin SL, Mackenzie G, J. Mater. Chem., 1, 707 (2013)
  33. Hamad SA, Dyab AF, Stoyanov SD, Paunov VN, J. Mater. Chem., 21, 18018 (2011)
  34. Lorch M, Thomasson MJ, Diego-Taboada A, Barrier S, Atkin SL, Mackenzie G, Archibald SJ, Chem. Commun. (2009) 6442.
  35. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM, J. Control. Release, 125, 193 (2008)
  36. Wakil A, Mackenzie G, Diego-Taboada A, Bell JG, Atkin SL, Lipids, 45, 645 (2010)
  37. Ackerman JD, Abiotic Pollen and Pollination: Ecological, Functional, and Evolutionary Perspectives, Springer, 2000, pp. 167.
  38. Culley TM, Weller SG, Sakai AK, Trends Ecol. Evol., 17, 361 (2002)
  39. Duhoux E, Zeitschrift fur Pflanzenphysiologie 99 (1980) 207.
  40. Gubatz S, Herminghaus S, Meurer B, Strack D, Wiermann R, Pollen et spores (1986).
  41. Herminghaus S, Gubatz S, Arendt S, Wiermann R, Zeitschrift fur Naturforschung C 43 (1988) 491.
  42. Southworth D, Am. J. Bot. (1985) 1274.
  43. Park JH, Seo J, Jackman JA, Cho NJ, Sci. Rep., 6, 28017 (2016)
  44. Mao GX, Zheng LD, Cao YB, Chen ZM, Lv YD, Wang YZ, Hu XL, Wang GF, Yan J, Oxid. Med. Cell. Longev. 2012 (2012).
  45. Hansen BS, Cushing EJ, Geol. Soc. Ame. Bull., 84, 1181 (1973)
  46. Jacobs BF, Contrib. Seri.: Am. Assoc. Stratigr. Palynol. 16 (1985) 155.
  47. Mack RN, Pollen Size Variation in Some Western North American Pines as Related to Fossil Pollen Identification, Washington State University Press,1971.
  48. Ting WS, 1966. http://agris.fao.org/agris-search/search.do?recordID=US201 300317259.
  49. Attenborough D, Salisbury M, Nightingale N, Haynes I, Elsbury M, Payne J, Olive S, The Private Life of Plants, JSTOR, 1995.
  50. Bohne G, Woehlecke H, Ehwald R, Ann. Bot., 96, 201 (2005)
  51. Bohne G, Richter E, Woehlecke H, Ehwald R, Ann. Bot., 92, 289 (2003)
  52. Barrier S, University of Hull, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk. bl.ethos.564124 (thesis).
  53. Barrier S, Diego-Taboada A, Thomasson MJ, Madden L, Pointon JC, Wadhawan JD, Beckett ST, Atkin SL, Mackenzie G, J. Mater. Chem., 21, 975 (2011)
  54. Osthoff KS, Wiermann R, J. Plant Physiol., 131, 5 (1987)
  55. Armentia A, Quintero A, Fernandez-Garcia A, Salvador J, Martin-Santos J, Ann. Allergy, 64, 49 (1990)
  56. Freeman G, Ann. Allergy, 70, 491 (1993)
  57. Varis S, Reiniharju J, Santanen A, Ranta H, Pulkkinen P, Grana, 50, 129 (2011)
  58. Bashir MEH, Lui JH, Palnivelu R, Naclerio RM, Preuss D, PLoS One, 8, e57566 (2013)
  59. Boasman AJ, The University of Hull, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507478 (thesis).
  60. Mundargi RC, Potroz MG, Park S, Shirahama H, Lee JH, Seo J, Cho NJ, Small (2015).
  61. Mundargi RC, Potroz MG, Park JH, Seo J, Tan EL, Lee JH, Cho NJ, Sci. Rep., 6 (2016)
  62. Potroz MG, Mundargi RC, Park JH, Tan EL, Cho NJ, J. Visualized Exp. (2016) e54768.
  63. Diego-Taboada A, Cousson P, Raynaud E, Huang Y, Lorch M, Binks BP, Queneau Y, Boa AN, Atkin SL, Beckett ST, J. Mater. Chem., 22, 9767 (2012)
  64. Mundargi RC, Potroz MG, Park JH, Seo J, Lee JH, Cho NJ, RSC Adv., 6, 16533 (2016)
  65. Knoche S, Kierfeld J, Phys. Rev. E, 84, 046608 (2011)
  66. Sen D, Bahadur J, Mazumder S, Verma G, Hassan P, Bhattacharya S, Vijai K, Doshi P, Soft Matter, 8, 1955 (2012)
  67. Parker RM, Zhang J, Zheng Y, Coulston RJ, Smith CA, Salmon AR, Yu ZY, Scherman OA, Abell C, Adv. Funct. Mater., 25(26), 4091 (2015)
  68. Nabavi SA, Vladisavljevic GT, Gu S, Manovic V, Langmuir, 32(38), 9826 (2016)
  69. Higgins F, Ho G, Agric. Wastes, 4, 97 (1982)
  70. Wenda N, Woehlecke H, Detloff T, Lerche D, Chem. Ing. Tech., 84(3), 309 (2012)