화학공학소재연구정보센터
Propellants Explosives Pyrotechnics, Vol.42, No.4, 438-447, 2017
Influence of Anvil Properties on RDX Thin Layer Ignition Behavior
We report on a drop-impact protocol that arrests sample radial flow to isolate how anvil properties influence ignition in a thin layer of RDX powder. To eliminate sliding friction as a probable heating mechanism, flow arrestment was provided by a waxed weighing paper that shielded the RDX layer from direct contact with the impact surfaces. RDX reaction sensitivity under bare and shielded conditions for the standard O1 hardened steel anvil was compared with that for two deformable anvil types: 1018 steel and C110 copper. Profilometer measurements of anvil deformation and paper impressions quantified anvil plastic work and final radial flow displacement. Post-test particle analyses correlated particle size distribution to ignition results. Experiments indicated that the impact energy absorbed by the anvils was varied and inhibited ignition accordingly. For the standard anvil, ignition was not inhibited under flow arrestment, suggesting that significant radial sliding or flow is not essential for thin layer ignition.