Macromolecules, Vol.50, No.9, 3573-3581, 2017
Renewable Thermoplastics Based on Lignin-Derived Polyphenols
A series of renewable triphenylmethane-type polyphenols (TPs) were synthesized from lignin-derived guaiacols (methylguaiacol and propylguaiacol) and aldehydes (4-hydroxybenzaldehyde, vanillin, and syringaldehyde). By converting guaiacols to catechols through ortho-demethylation, the newly formed phenolic para site remarkably improved the reactivity as reflected by conversion of TPs. Optimized reagent molar ratios were aldehyde/catechol (1:4) and aldehyde/off H2SO4 (1:3). A typical TP (VAN-M-CAT)was converted to glycidyl ether (GE-VAN-M-CAT) to examine its feasibility as precursor to epoxy thermosets. The resulting network exhibited excellent glassy modulus (12.3 GPa), glass transition temperature (167 degrees C), and thermal stability, which were attributed to the rigid triphenylmethane framework, high functionality (n = 5), and high cross-link density. A fully biobased epoxy comonomer (VAN-LIN-EPO), which was prepared by esterification of VAN-M-CAT with linoleic acid followed by epoxidation, could tune the material properties. This study widens the synthesis route of fully biobased polyphenols, which can yield polymers with excellent properties.