Langmuir, Vol.33, No.15, 3720-3730, 2017
Spectrophotometry of Thin Films of Light-Absorbing Particles
Thin films of dispersions of light-absorbing solid particles or emulsions containing a light-absorbing solute all have a nonuniform distribution of light-absorbing species throughout the sample volume. This results in nonuniform light absorption over the illuminated area, which causes the optical absorbance, as measured using a conventional specular UV vis spectrophotometer, to deviate from the Beer-Lambert relationship. We have developed a theoretical model to account for the absorbance properties of such films, which are shown to depend on the size and volume fraction of the light-absorbing particles plus other sample variables. We have compared model predictions with measured spectra for samples consisting of emulsions containing a dissolved light-absorbing solute. Using no adjustable parameters, the model successfully predicts the behavior of nonuniform, light-absorbing emulsion films with varying values of droplet size, volume fraction, and other parameters.