- Previous Article
- Next Article
- Table of Contents
Journal of the Electrochemical Society, Vol.164, No.7, E161-E165, 2017
Influence of Phosphorus on Current Efficiency in Aluminum Electrolysis at Different Current Densities
Many factors may contribute to loss of current efficiency (CE) in aluminum reduction and one of them is a presence of impurities. In this work, the effect of phosphorus on CE is studied in a laboratory cell at different current densities. Due to a growing trend toward higher amperage in retrofitted industrial cells, a study is performed both at a representative industrial current density (0.8 A/cm(2)) and at a high current density (1.5 A/cm(2)). More resolution was obtained at phosphorus levels comparable to typical industrial concentration in aluminum reduction cell (0-220 mg/kg). It is shown that the effect of phosphorus on the CE is more significant at high current density. Trend lines for the whole concentration range btw. 0 and 630 mg/kg showed a decrease of 1.1% in CE per 100 mg/kg for the high current density and 0.67% per 100 mg/kg at the low current density. The detrimental effect was more pronounced for relatively low phosphorus contents up to 220 mg/kg. A trend line for that smaller range revealed a reduction of 2.5% per 100 mg/kg of phosphorus at 1.5 A/cm(2), while at 0.8 A/cm(2) a reduction of 0.92% per 100 mg/kg of phosphorus was obtained. This indicates that increasing amperage in retrofitted cells may amplify the detrimental effect of impurities on the current efficiency. (C) The Author(s) 2017. Published by ECS. All rights reserved.