화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.139, No.22, 7648-7656, 2017
Versatile Assembly of Metal-Coordinated Calix[4]resorcinarene Cavitands and Cages through Ancillary Linker Tuning
We propose a design strategy for assembly of metal-coordinated calix[4]resorcinarene cavitands and cages by tuning of the ancillary linkers. Assembly of newly functionalized cavitand with angular isophthalic acid analogs affords three intriguing metal-coordinated cavitands with deep cavities, 1a-1c. Further, by mediating appropriate spacers between two isophthalic acids, two bowl-shaped cavitands are successfully joined together to produce three elegant coordination cages with tunable sizes and shapes, 2a-2c. The cavitand and cage crystals possess considerable amount of accessible porosities, as clearly established by gas adsorption measurements. Remarkably, 1a-1c also exhibit high structural flexibilities, reversibly transforming between the open-pore and the narrow-pore structures, upon removal and sorption of guest molecules, as evidenced by diffraction and gas adsorption measurements. By combining experimental studies with density functional theory (DFT) calculations, we thoroughly elucidated the mechanism of the structural transformations in response to external stimuli in this new class of flexible porous solids.