화학공학소재연구정보센터
Journal of Power Sources, Vol.348, 302-310, 2017
Novel strategy to improve the Li-storage performance of micro silicon anodes
Silicon (Si)-based materials have attracted significant research as an outstanding candidate for the anode material of lithium-ion batteries. However, the tremendous volume change and poor electron conductivity of bulk silicon result in inferior capacity retention and low Coulombic efficiency. Designing special Si with,high energy density and good stability in a bulk electrode remains a significant challenge. In this work, we introduce an ingenious strategy to modify micro silicon by designing a porous structure, constructing nanoparticle blocks, and introducing carbon nanotubes as wedges. A disproportion reaction, coupled with a chemical etching process and a ball-milling reaction, are applied to generate the desired material. The as-prepared micro silicon material features porosity, small primary particles, and effective CNT-wedging, which combine to endow the resultant anode with a high reversible specific capacity of up to 2028.6 mAh g(-1) after 100 cycles and excellent rate capability. The superior electrochemical performance is attributed to the unique architecture and optimized composition. (C) 2017 Elsevier B.V. All rights reserved.