Journal of Materials Science, Vol.52, No.16, 9424-9429, 2017
Near-infrared-emitting colloidal Ag2S quantum dots excited by an 808 nm diode laser
Thioglycolic acid (TGA)-coated colloidal Ag2S quantum dots (QDs) emitting in the near-infrared (NIR) region upon excitation by an 808 nm diode laser were synthesized. The observed photoluminescence (PL) was attributed to the presence of ligand-modified Ag2S on the QD surfaces and could be easily controlled by a simple dilution process due to the concentration-dependent surface structure of the colloidal QDs. Upon dilution of the solution, the PL intensity initially increased before later decreasing, with a blueshift being observed in the PL spectra. These phenomena can be accounted for by the aggregation of QDs due to a decrease in the content of ligand-modified Ag2S on the QD surfaces upon dilution, which in turn affected the fluorescence resonance energy transfer (FRET), and re-emission of the surface energy level.