화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.337, 62-71, 2017
Fungal biocatalyst activated by an electric field: Improved mass transfer and non-specificity for hydrocarbon degradation in an airlift bioreactor
The combination of biological and electrochemical techniques enhances the bioremediation efficiency of treating oil-contaminated water. In this study a non-growing fungal whole cell biocatalyst (BC; Aspergillus brasiliensis attached to perlite) pretreated with an electric field (EF), was used to degrade a hydrocarbon blend (hexadecane-phenanthrene-pyrene; 100:1:1 w/w) in an airlift bioreactor (ALB). During hydrocarbon degradation, all mass transfer resistances (internal and external) and sorption capacity were experimentally quantified. Internal mass transfer resistances were evaluated through BC effectiveness factor analysis as a function of the Thiele modulus (using first order reaction kinetics, assuming a spherical BC, five particle diameters). External (interfacial) mass transfer resistances were evaluated by k(L)a determination. EF pretreatment during BC production promoted surface changes in BC and production of an emulsifier protein in the ALB. The BC surface modifications enhanced the affinity for hydrocarbons, improving hydrocarbon uptake by direct contact. The resulting emulsion was associated with decreased internal and external mass transfer resistances. EF pretreatment effects can be summarized as: a combined uptake mechanism (direct contact dominant followed by emulsified form dominant) diminishing mass transfer limitations, resulting in a non-specific hydrocarbon degradation in blend. The pretreated BC is a good applicant for oil-contaminated water remediation. (C) 2017 Elsevier B.V. All rights reserved.