화학공학소재연구정보센터
Journal of Bioscience and Bioengineering, Vol.123, No.6, 679-684, 2017
Evaluation of tyrosinase inhibitory and antioxidant activities of Angelica dahurica root extracts for four different probiotic bacteria fermentations
Angelica dahurica root (ADR), which shows strong antioxidant activity, is used in Chinese medicine. This study evaluated the tyrosinase inhibitory and antioxidant activities of ADR extracts fermented by four different probiotic bacteria: Bifidobacterium bifidum, Bifidobacterium lactic, Lactobacillus acidophilus, and Lactobacillus brevis. The ADR was first extracted using distilled water, 70% ethanol, and ethyl acetate, and then fermented by probiotic bacteria. The physiological characteristics of these fermented extracts, namely the antityrosinase activity, antioxidant activity, phenolic composition, and phenolic content, were evaluated and compared with those of unfermented extracts. Results showed that the water extracts after fermentation by probiotic bacteria exhibited the most favorable physiological characteristics. Among the extracts fermented by these probiotic bacteria, L. acidophilus-fermented ADR extract showed the most favorable physiological characteristics. The optimal IC50 values for antityrosinase activity, DPPH radical scavenging activity, and reducing power for L acidophilus-fermented ADR extract were 0.07 +/- 0.03, 0.12 +/- 0.01, and 0.68 +/- 0.06 mg/mL, respectively. Furthermore, the physiological activities of fermented extracts were considerably higher than those of unfermented extracts. The tyrosinase inhibition and melanin content of B16F10 melanoma cells, and cytotoxicity effects of the fermented ADR extracts on B16F10 cells were also evaluated. We found that the L. acidophilus-fermented ADR extract at 1.5 mg/mL showed significant cellular antityrosinase activity with low melanin production in B16F10 cells and was noncytotoxic to B16F10 cells. Among all probiotic bacteria, water-extracted ADR fermented by L acidophilus for 48 h was found to be the best skincare agent or antioxidant agent. (C) 2017, The Society for Biotechnology, Japan. All rights reserved.