화학공학소재연구정보센터
International Polymer Processing, Vol.32, No.3, 363-377, 2017
Analysis of Models Predicting Morphology Transitions in Reactive Twin-Screw Extrusion of Bio-Based Polyester/Polyamide Blends
Immiscible PLA/PA11 of 80/20 and 50/50 wt% were compatibilized through addition of p-toluenesulfonic acid (TsOH) catalyst in reactive ultra-high speed twin-screw extrusion. Two mixing screw designs were compared for their ability to disperse the PA11 droplets in the PLA matrix as a function of screw speed up to 2000 rpm. The size and polydispersity of droplets of dispersed PA11 decreased when a high shear (HS) screw was used, whereas broad droplet size distribution was produced in the low shear (LS) screw. Two models predicting the droplet size dependence on shear rate, viscosity ratio and interfacial tension were fit to the experimental data. The Serpe model including volume fraction effects produced a better fit compared to the Wu model, which does not include volume fraction effects. Mechanical testing indicated that the compatibility of PLA/PA11 blends was improved through addition of TsOH catalyst for 50/50 wt% blends due to ester amide exchange reactions at the interfaces in the immiscible PLA and PA11 phases. The enhancement of ductility was greater after processing with the LS screw configuration than the HS screw configuration. The inferior properties after high shear mixing were likely due to molecular weight degradation during processing. While the aggressive shear in the HS screw design resulted in fine dispersion, care should be taken to minimize degradation, especially for shear sensitive polymers.