International Journal of Hydrogen Energy, Vol.42, No.12, 7798-7810, 2017
Techno-economic and environmental performances of glycerol reforming for hydrogen and power production with low carbon dioxide emissions
This paper is evaluating from the conceptual design, thermal integration, techno-economic and environmental performances points of view the hydrogen and power generation using glycerol (as a biodiesel by-product) reforming processes at industrial scale with and without carbon capture. The evaluated hydrogen plant concepts produced 100,000 Nm(3)/h hydrogen (equivalent to 300 MWth) with negligible net power output for export. The power plant concepts generated about 500 MW net power output. Hydrogen and power co-generation was also assessed. The CO2 capture concepts used alkanolamine-based gas liquid absorption. The CO2 capture rate of the carbon capture unit is at least 90%, the carbon capture rate of the overall reforming process being at least 70%. Similar designs without carbon capture have been developed to quantify the energy and cost penalties for carbon capture. The various glycerol reforming cases were modelled and simulated to produce the mass & energy balances for quantification of key plant performance indicators (e.g. fuel consumption, energy efficiency, ancillary energy consumption, specific CO2 emissions, capital and operational costs, production costs, cash flow analysis etc.). The evaluations show that glycerol reforming is promising concept for high energy efficiency processes with low CO2 emissions. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Keywords:Hydrogen and power production;Glycerol reforming;Carbon capture and storage (CCS);Techno-economic and environmental evaluations