화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.42, No.15, 10248-10263, 2017
Thermodynamic assessment of advanced SOFC-blade cooled gas turbine hybrid cycle
This paper focuses on novel integration of high temperature solid oxide fuel cell coupled with recuperative gas turbine (with air-film cooling of blades) based hybrid power plant (SOFC-blade cooled GT). For realistic analysis of gas turbine cycle air-film blade cooling technique has been adopted. First law thermodynamic analysis investigating the combine effect of film cooling of blades, SOFC, applied to a recuperated gas turbine cycle has been reported. Thermodynamic modeling for the proposed cycle has been presented. Results highlight the influence of film cooling of blades and operating parameters of SOFC on various performance of SOFC-blade cooled GT based hybrid power plant. Moreover, parametric investigation has also been done to examine the effect of compressor pressure ratio, turbine inlet temperature, on hybrid plant efficiency and plant specific work. It has been found that on increasing turbine inlet temperature (TIT) beyond a certain limit, the efficiency of gas turbine starts declining after reaching an optimum value which is compensated by continuous increase in SOFC efficiency with increase in operating temperature. The net result is higher performance of hybrid cycle with increase in maximum cycle temperature. Furthermore, it has been observed that at TIT 1600 K and compression ratio 20, maximum efficiency of 73.46% can been achieved. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.