화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.62, No.5, 2095-2106, 2017
Asynchronous Distributed Optimization Via Randomized Dual Proximal Gradient
In this paper we consider distributed optimization problems in which the cost function is separable, i.e., a sum of possibly non-smooth functions all sharing a common variable, and can be split into a strongly convex term and a convex one. The second term is typically used to encode constraints or to regularize the solution. We propose a class of distributed optimization algorithms based on proximal gradientmethods applied to the dual problem. We show that, by choosing suitable primal variable copies, the dual problem is itself separable when written in terms of conjugate functions, and the dual variables can be stacked into non-overlapping blocks associated to the computing nodes. We first show that a weighted proximal gradient on the dual function leads to a synchronous distributed algorithm with local dual proximal gradient updates at each node. Then, as main paper contribution, we develop asynchronous versions of the algorithm in which the node updates are triggered by local timers without any global iteration counter. The algorithms are shown to be proper randomized blockcoordinate proximal gradient updates on the dual function.