Electrochimica Acta, Vol.240, 155-162, 2017
Enhanced morphology, crystallinity and conductivity of poly (3,4-ethyldioxythiophene)/ErGO composite films by in situ reduction of TrGO partially reduced on PEDOT modified electrode
In this work, novel composites obtained by electrochemical reduction of graphene oxide (ErGO)/poly (3,4-ethylenedioxythiophene), PEDOT, have been prepared by partially reduced (TrGO) graphene oxide reduction inside the polymer. Composites were characterized using different techniques namely, RAMAN, XRD, FESEM, HR-TEM and XPS. The results showed that the conductivity of PEDOT/ErGO significantly improves on TrGO reduction. In fact, doping-undoping process increased 10-fold and the electrochemical response showed a 2-fold increase as compared with PEDOT and PEDOT/TrGO. RAMAN, XRD and XPS allowed corroborating that C-O bonds disappeared in PEDOT/ErGO composites suggesting a partial removal of oxygen-containing groups. FESEM and HR-TEM images exhibited a uniform and porous structure of the PEDOT/ErGO composite. On the other hand, the reduction of TrGO, improves the composite specific surface area. As a result, the PEDOT/ErGO composite presents much higher electrochemical response in comparison with PEDOT and PEDOT/TrGO. The electrochemical properties put them into a promising position as a potential material for energy storage devices, e.g. super capacitors, batteries and biosensors, due to the permeable film with defined pore sizes that PEDOT/ErGO showed. (C) 2017 Elsevier Ltd. All rights reserved.