Electrochimica Acta, Vol.241, 272-280, 2017
Synthesis and evaluation of a novel pyrrolidinium-based zwitterionic additive with an ether side chain for ionic liquid electrolytes in high-voltage lithium-ion batteries
Ionic liquids (ILs) containing zwitterions were studied as electrolytes for lithium-ion batteries. The effect of a pyrrolidinium zwitterion with a long ether side chain on the thermal and electrochemical properties of an IL and the charge/discharge properties of Li/LiCoO2, Li/LiNi1/3Mn1/3Co1/3O2 (NMC), and graphite/Li cells with IL/zwitterion electrolytes was investigated. The melting temperature of the IL-based electrolyte composed of N-methyl-N-methoxymethylpyrrolidinium bis(fluorosulfonyl) amide ([Pyr(1,101)] [FSA]) and lithium bis(fluorosulfonyl) amide (LiFSA) with 3-(1-(2-(2-methoxyethoxy)ethyl)pyrrolidin-1-ium-1-yl)propane-1-sulfonate (OE2pyps) as the zwitterionic additive was about -18 degrees C. The electrochemical window of [Pyr(1,101)][FSA]/LiFSA/OE2pyps was over 5 V vs. Li/Li+. Li|electrolyte| LiCoO2 cells containing the [Pyr(1,101)][FSA]/LiFSA/OE2pyps electrolyte system exhibited high capacity values in the cut-off voltage range of 3.0-4.3 V, even after 50 cycles. Moreover, increases of interfacial resistance between the electrolyte and cathode during cycling were suppressed. Li|electrolyte|NMC cells containing this electrolyte system also exhibited high capacities in a wide cut-off voltage range of 3.0-4.6 V, even after 50 cycles. In the cyclic voltammograms of cells employing a graphite electrode, the intercalation/deintercalation of lithium ions was observed between 0 and + 0.4 V vs. Li/Li+. Further, graphite|electrolyte|Li cells containing [Pyr(1,101)][FSA]/LiFSA/OE2pyps exhibited stable charge/discharge cycle behavior over 5 cycles. (C) 2017 Elsevier Ltd. All rights reserved.
Keywords:Zwitterion;Ether group;Ionic liquid;Pyrrolidinium;Bis(fluorosulfonyl)amide;Lithium-ion battery