Composite Interfaces, Vol.24, No.9, 861-882, 2017
EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites
Graphene decorated with graphene quantum dots (G-D-GQDs) have been successfully synthesized using solvothermal cutting of graphene oxide. The incorporation of G-D-GQDs in polyvinyledene fluoride (PVDF) matrix shows the total EMI shielding effectiveness (SET) of 31dB at 8GHz. The main mechanism of high EMI shielding effectiveness is reflection and absorption of EM radiation. The high absorption of EM radiation is due to tunneling of electrons from GQDs. Further, decoration of G-D-GQDs with conducting Ag nanoparticles (G-D-GQDsAg) enhances the SET value to 43dB at 8GHz of PVDF/G-D-GQDsAg nanocomposite, due to increase in electrical conductivity of PVDF/G-D-GQDsAg nanocomposite and enhanced dispersion of G-D-GQDsAg in PVDF matrix. The incorporation of G-D-GQDs and G-D-GQDsAg in PVDF matrix also increases the thermal stability and crystallinity of PVDF. The increase in thermal stability and crystallinity are more for PVDF/G-D-GQDsAg nanocomposite as compare to PVDF/G-D-GQDs nanocomposite, due to better dispersion of G-D-GQDsAg in PVDF matrix. Thus, PVDF/G-D-GQDsAg nanocomposite having high SET value can shield 99.9% of electromagnetic radiation in X-band range, which make it suitable for EMI shielding application for consumer electronic equipment's.