Bioresource Technology, Vol.234, 310-319, 2017
Optimization of hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading
This study evaluates the efficiency of four novel up-flow reactors for ex situ biogas upgrading converting externally provided CO2 and H-2 to CH4, via hydrogenotrophic methanogenesis. The gases were injected through stainless steel diffusers combined with alumina ceramic sponge or through alumina ceramic membranes. Pore size, input gas loading and gas recirculation flow rate were modulated to optimize gas-liquid mass transfer, and thus methanation efficiency. Results showed that larger pore size diffusion devices achieved the best kinetics and output-gas quality converting all the injected H-2 and CO2, up to 3.6 L/L-REACTOR.d H-2 loading rate. Specifically, reactors' CH4 content increased from 23 to 96% and the CH4 yield reached 0.25 L-CH4/L-H2. High throughput 16S rRNA gene sequencing revealed predominance of bacteria belonging to Anaerobaculum genus and to uncultured order MBA08. Additionally, the massive increase of hydrogenotrophic methanogens, such as Methanothermobacter thermautotrophicus, and syntrophic bacteria demonstrates the selection-effect of H-2 on community composition. (C) 2017 Elsevier Ltd. All rights reserved.
Keywords:Ex situ biogas upgrading;Gas-liquid mass transfer rate;Ceramic sponge;Ceramic membrane;16S rRNA gene sequencing