화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.487, No.2, 333-338, 2017
WDR5 positively regulates p53 stability by inhibiting p53 ubiquitination
WD40 repeat protein WDR5 is a core component of the Set/MLL histone methyltransferase complex which catalyzes histone H3 Lys4 trimethylation and activates gene transcription in human cells. WDR5 promotes Set/MLL complex assembly and mediates the complex binding to Lys4-dimethylated histone H3 tail. Most earlier studies report that WDR5 exerts profound effects on various cellular and organismal processes mainly through epigenetic regulation of gene transcription. However, the functions of WDR5 in lung cancer remain largely unknown. Here, we report that WDR5 positively regulates p53 stability by inhibiting p53 ubiquitination in human lung cancer A549 cells. Overexpression of WDR5 dramatically increases p53 protein levels and its half-life in A549 cells, while depletion of WDR5 with WDR5-specific siRNAs significantly decreases p53 protein levels. We also observe that WDR5 is required for p53 induction in response to cisplatin treatment. Mechanistically, WDR5 colocalizes with p53 and inhibits p53 ubiquitination, resulting in p53 stabilization. Consequently, overexpression of WDR5 induces G1 phase arrest in A549 cells, and knocking down WDR5 by siRNAs reduces the population at G1 phase. Furthermore, p53 expression levels is at least in part determined by the p53 positive regulator WDR5 in some cancer cells. Taken together, these data suggest that WDR5 is directly involved in p53 signaling pathway. Our studies provide a new insight into WDR5 functions in A549 cells. (C) 2017 Elsevier Inc. All rights reserved.