Applied Surface Science, Vol.416, 344-352, 2017
Durable underwater superoleophobic PDDA/halloysite nanotubes decorated stainless steel mesh for efficient oil-water separation
A durable underwater superoleophobic mesh was conveniently prepared by layer-by-layer (LBL) assembly of poly (diallyldimethylammonium chloride) (PDDA) and halloysite nanotubes (HNTs) on a stainless steel mesh. The hierarchical structure and roughness of the PDDA/HNTs coating surface were controlled by adjusting the number of layer deposition cycles. When the PDDA/HNTs coating with 10 deposition cycles was decorated on the mesh with pore size of about 54 mu m, the underwater superoleophobic mesh was obtained. The as-prepared underwater superoleophobic PDDA/HNTs decorated mesh exhibits outstanding oil-water separation performance with a separation efficiency of over 97% for various oil/water mixtures, which allowed water to pass through while repelled oil completely. In addition, the as-prepared decorated mesh still maintained high separation efficiency above 97% after repeated 20 separation times for hexane/water mixture or chloroform/water mixture. More importantly, the as-prepared decorated mesh is durable enough to resist chemical and mechanical challenges, such as strong alkaline, salt aqueous and sand abrasion. Therefore, the as-prepared decorated mesh has practical utility in oil-water separation due to its stable oil-water performance, remarkable chemical and mechanical durability and the facile and eco-friendly preparation process. (C) 2017 Elsevier B.V. All rights reserved.
Keywords:Underwater superoleophobic;Layer-by-layer assembly;Halloysite nanotubes;Stainless steel mesh;Oil-water separation;Durability