화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.52, 1-6, August, 2017
A high-performance polymer composite electrolyte embedded with ionic liquid for all solid lithium based batteries operating at ambient temperature
E-mail:,
A novel polymer composite electrolyte for lithium-based battery operating at room temperature was introduced. The proposed polymer composite electrolyte consisted of electrolyte using a 3-D cross-linked polymer matrix, which is synthesized with polyethylene glycol (PEG) and 3 glycidoxypropyltrimethox- ysilane (GPTMS), and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITFSI) as a Liion transport medium. The proposed polymer composite electrolyte shows a high ionic conductivity of 35 x 10-2mS cm-1 and high decomposition temperature of 250 °C with a 3-D cross-linked polymer matrix. The EMITFSI mass ratio is 1:0.7 at room temperature. In addition, when polymer composite electrolyte is applied to the solid battery consisting of Li metal as an anode and LiFePO4 as a cathode, it can be operated at room temperature with a high specific capacity of 75.8 mAh/g at 0.1C rate. Furthermore, the battery with a structure of Li/polymer composite electrolyte/LiFePO4 also has excellent capacity retention.
  1. Zhu CB, Cheng H, Yang Y, J. Electrochem. Soc., 155(8), A569 (2008)
  2. Scrosati B, Garche J, J. Power Sources, 195(9), 2419 (2010)
  3. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B, Nat. Mater., 8(8), 621 (2009)
  4. Borodin O, Smith GD, Macromolecules, 39(4), 1620 (2006)
  5. Choi I, Ahn H, Park MJ, Macromolecules, 44(18), 7327 (2011)
  6. Fergus JW, J. Power Sources, 195(15), 4554 (2010)
  7. Barteau KP, Wolffs M, Lynd NA, Fredrickson GH, Krarner EJ, Hawker CJ, Macromolecules, 46(22), 8988 (2013)
  8. Chiu CY, Chen HW, Kuo SW, Huang CF, Chang FC, Macromolecules, 37(22), 8424 (2004)
  9. Xiao QZ, Wang XZ, Li W, Li ZH, Zhang TJ, Zhang HL, J. Membr. Sci., 334(1-2), 117 (2009)
  10. Kurc B, J. Solid State Chem., 18, 2035 (2014)
  11. Kurc B, Jesionowski T, J. Solid State Chem., 19, 1427 (2015)
  12. Walkowiak M, Zalewska A, Jesionowski T, Waszak D, Czajka B, J. Power Sources, 159(1), 449 (2006)
  13. Zalewska A, Walkowiak M, Niedzicki L, Jesionowski T, Langwald N, Electrochim. Acta, 55(4), 1308 (2010)
  14. Lee YW, Shin WK, Kim DW, Solid State Ion., 255, 6 (2014)
  15. Digar A, Hung SL, Wang HL, Wen TC, Gopalan A, Polymer, 43(3), 681 (2002)
  16. Santhosh P, Vasudevan T, Gopalan A, Lee KP, J. Power Sources, 160(1), 609 (2006)
  17. Celik SU, Bozkurt A, Curr. Appl. Phys., 13(8), 1668 (2013)
  18. Han PF, Zhu YW, Liu J, J. Power Sources, 284, 459 (2015)
  19. Watanabe M, Yamada SI, Sanui K, Ogata N, J. Chem. Soc. Chem. Commun. (1993) 929.
  20. Simone PM, Lodge TP, ACS Appl. Mater. Interfaces, 1, 2812 (2009)
  21. Shin JH, Henderson WA, Passerini S, Electrochem. Commun., 5, 1016 (2003)
  22. Nakajima H, Ohno H, Polymer, 46(25), 11499 (2005)
  23. Armand JCM, Duclot M, Poly-Ethers as Solid Electrolytes, Fast Ion Transport in Solids, Electrodes and Electrolytes, North Holland Publishers, Amsterdam, 1979.
  24. Mindemark J, Sun B, Torma E, Brandell D, J. Power Sources, 298, 166 (2015)
  25. Yoshio RJBM, Akiya Kozawa, Lithium-Ion Batteries: Science and Technologies, Springer Science & Business Media, 2010.
  26. Chattoraj J, Diddens D, Heuer A, J. Chem. Phys., 140, 024906 (2014)
  27. Park MJ, Choi I, Hong J, Kim O, J. Appl. Polym. Sci., 129(5), 2363 (2013)
  28. Feng T, Wu F, Wu C, Wang XD, Feng GS, Yang HY, Solid State Ion., 221, 28 (2012)
  29. Ahn YK, Kim B, Ko J, You DJ, Yin Z, Kim H, Shin D, Cho S, Yoo J, Kim YS, J. Mater. Chem., 4, 4386 (2016)
  30. FreedomCAR Electric Energy Storage System Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications, SAND 2005-3123, Released June 2005.
  31. Golodnitsky D, Strauss E, Peled E, Greenbaum S, J. Electrochem. Soc., 16, A2551 (2015)
  32. Xue Z, He D, Xie X, J. Mater. Chem., 3, 19218 (2015)