- Previous Article
- Next Article
- Table of Contents
Journal of Industrial and Engineering Chemistry, Vol.52, 1-6, August, 2017
A high-performance polymer composite electrolyte embedded with ionic liquid for all solid lithium based batteries operating at ambient temperature
E-mail:,
A novel polymer composite electrolyte for lithium-based battery operating at room temperature was introduced. The proposed polymer composite electrolyte consisted of electrolyte using a 3-D cross-linked polymer matrix, which is synthesized with polyethylene glycol (PEG) and 3 glycidoxypropyltrimethox- ysilane (GPTMS), and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITFSI) as a Liion transport medium. The proposed polymer composite electrolyte shows a high ionic conductivity of 35 x 10-2mS cm-1 and high decomposition temperature of 250 °C with a 3-D cross-linked polymer matrix. The EMITFSI mass ratio is 1:0.7 at room temperature. In addition, when polymer composite electrolyte is applied to the solid battery consisting of Li metal as an anode and LiFePO4 as a cathode, it can be operated at room temperature with a high specific capacity of 75.8 mAh/g at 0.1C rate. Furthermore, the battery with a structure of Li/polymer composite electrolyte/LiFePO4 also has excellent capacity retention.
Keywords:Polymer composite electrolyte;1-Ethyl-3-methylimidazolium bis;(trifluoromethylsulfonyl)imide;Ionic conductivity,Lithium battery
- Zhu CB, Cheng H, Yang Y, J. Electrochem. Soc., 155(8), A569 (2008)
- Scrosati B, Garche J, J. Power Sources, 195(9), 2419 (2010)
- Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B, Nat. Mater., 8(8), 621 (2009)
- Borodin O, Smith GD, Macromolecules, 39(4), 1620 (2006)
- Choi I, Ahn H, Park MJ, Macromolecules, 44(18), 7327 (2011)
- Fergus JW, J. Power Sources, 195(15), 4554 (2010)
- Barteau KP, Wolffs M, Lynd NA, Fredrickson GH, Krarner EJ, Hawker CJ, Macromolecules, 46(22), 8988 (2013)
- Chiu CY, Chen HW, Kuo SW, Huang CF, Chang FC, Macromolecules, 37(22), 8424 (2004)
- Xiao QZ, Wang XZ, Li W, Li ZH, Zhang TJ, Zhang HL, J. Membr. Sci., 334(1-2), 117 (2009)
- Kurc B, J. Solid State Chem., 18, 2035 (2014)
- Kurc B, Jesionowski T, J. Solid State Chem., 19, 1427 (2015)
- Walkowiak M, Zalewska A, Jesionowski T, Waszak D, Czajka B, J. Power Sources, 159(1), 449 (2006)
- Zalewska A, Walkowiak M, Niedzicki L, Jesionowski T, Langwald N, Electrochim. Acta, 55(4), 1308 (2010)
- Lee YW, Shin WK, Kim DW, Solid State Ion., 255, 6 (2014)
- Digar A, Hung SL, Wang HL, Wen TC, Gopalan A, Polymer, 43(3), 681 (2002)
- Santhosh P, Vasudevan T, Gopalan A, Lee KP, J. Power Sources, 160(1), 609 (2006)
- Celik SU, Bozkurt A, Curr. Appl. Phys., 13(8), 1668 (2013)
- Han PF, Zhu YW, Liu J, J. Power Sources, 284, 459 (2015)
- Watanabe M, Yamada SI, Sanui K, Ogata N, J. Chem. Soc. Chem. Commun. (1993) 929.
- Simone PM, Lodge TP, ACS Appl. Mater. Interfaces, 1, 2812 (2009)
- Shin JH, Henderson WA, Passerini S, Electrochem. Commun., 5, 1016 (2003)
- Nakajima H, Ohno H, Polymer, 46(25), 11499 (2005)
- Armand JCM, Duclot M, Poly-Ethers as Solid Electrolytes, Fast Ion Transport in Solids, Electrodes and Electrolytes, North Holland Publishers, Amsterdam, 1979.
- Mindemark J, Sun B, Torma E, Brandell D, J. Power Sources, 298, 166 (2015)
- Yoshio RJBM, Akiya Kozawa, Lithium-Ion Batteries: Science and Technologies, Springer Science & Business Media, 2010.
- Chattoraj J, Diddens D, Heuer A, J. Chem. Phys., 140, 024906 (2014)
- Park MJ, Choi I, Hong J, Kim O, J. Appl. Polym. Sci., 129(5), 2363 (2013)
- Feng T, Wu F, Wu C, Wang XD, Feng GS, Yang HY, Solid State Ion., 221, 28 (2012)
- Ahn YK, Kim B, Ko J, You DJ, Yin Z, Kim H, Shin D, Cho S, Yoo J, Kim YS, J. Mater. Chem., 4, 4386 (2016)
- FreedomCAR Electric Energy Storage System Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications, SAND 2005-3123, Released June 2005.
- Golodnitsky D, Strauss E, Peled E, Greenbaum S, J. Electrochem. Soc., 16, A2551 (2015)
- Xue Z, He D, Xie X, J. Mater. Chem., 3, 19218 (2015)