Polymer(Korea), Vol.41, No.4, 610-618, July, 2017
실시간 FTIR 분광법을 이용한 경화제 함량 및 경화 온도에 따른 폴리우레탄 탄성체 경화반응속도
Curing Kinetics of Polyurethane Elastomers Depending on the Amount of Curing Agent and Temperatures by Real Time FTIR Spectroscopy
E-mail:
초록
본 연구에서는 경화제의 함량과 경화 온도가 폴리우레탄 탄성체의 경화반응속도에 끼치는 영향에 대해 연구 하였다. 톨루엔 디이소시아네이트와 폴리테트라메틸렌 에테르 글리콜을 질소 분위기 하에 80 °C 에서 한 시간 동안 반응시켜 폴리우레탄 프리폴리머를 합성하였으며 폴리우레탄 탄성체를 만들기 위해 4,4'-메틸렌 비스(2-클로로아닐린)을 경화제로 적용하였다. 아민-이소시아네이트 비율은 0.85에서 1.05까지, 경화온도는 각각 80 °C에서 120 °C까지 진행하여 폴리우레탄 탄성체의 경화반응성은 실시간 FTIR을 통해 확인하였다. 아민-이소시아네이트 비율과 경화온도를 높일수록 전환율과 반응속도가 증가함을 알 수 있었으며 수치 해석을 위해 Kamal 식을 적용하였다.
The effects of stoichiometric ratios of curing agent to prepolymer and temperature on the curing reaction rates of polyurethane elastomer were investigated. The prepolymers were made from toluene diisocyanate (TDI) and polytetramethylene ether glycol (PTMEG) at 80 °C in nitrogen atmosphere for an hour. Then the prepolymers were mixed with the curing agent, 4,4'-methylene bis(2-chloroaniline) (MOCA) to produce polyurethane elastomer. The curing reactivities of polyurethane prepolymer with curing agent were measured by real time FTIR spectroscopy. The stoichiometric ratios were controlled from 0.85 to 1.05 at fixed curing temperatures from 80 to 120°C. Conversions and reaction rates were increased, as the stoichiometric ratios increased. And they were increased, as the reaction temperatures increased. Kamal’s equation was adopted for simulation as a kinetic model.
- Hepburn C, Polyurethane Elastomers, 2nd ed., Elsevier, Amesterdam, 1991.
- Recker K, Polyurethane Handbook, 2nd ed., Oertel G, Editor, Hanser, Munich, 1993.
- Dusek K, Polym. Bull., 17, 481 (1987)
- Ilavsky M, Bouchal K, Dusek K, Polym. Bull., 14, 295 (1985)
- Clemitson IR, Castable polyurethane elastomers, CRC Press, Florida, 2008.
- Mahmood N, Khan AU, Khan MS, Ali Z, Haq AU, Wutzler A, J. Appl. Polym. Sci., 122(2), 1012 (2011)
- Socrates G, Infrared Characteristic Group Frequencies- Tables and Charts, 2nd ed., Wiley, New Jersey, 1994.
- Parnell S, Min K, Cakmak M, Polymer, 44(18), 5137 (2003)
- Elwell MJ, Ryan AJ, Grunbauer HJ, Vanlieshout HC, Polymer, 37(8), 1353 (1996)
- Kamal MR, Sourour S, Polym. Eng. Sci., 13, 59 (1973)
- Han S, Kim WG, Yoon HG, Moon TJ, J. Appl. Polym. Sci., 68, 1125 (1988)
- Eceiza A, Zabala J, Egiburu JL, Corcuer MA, Mondragon I, Pascault JP, Eur. Polym. J., 35, 1949 (1999)
- d'Arlas BF, Rueda L, Stefani PM, de la Caba K, Mondragon I, Eceiza A, Thermochim. Acta, 459(1-2), 94 (2007)
- Han S, Kim WG, Yoon HG, Moon TJ, J. Appl. Polym. Sci., 36, 773 (1998)
- Kenny JM, J. Appl. Polym. Sci., 51(4), 761 (1994)