Journal of Industrial and Engineering Chemistry, Vol.51, 44-48, July, 2017
Thin-film UV.vis spectroscopy as a chemically-sensitive monitoring tool for copper etching bath
E-mail:
Subtractive copper etching is a central process in fabricating advanced printed circuit boards, where ever- shrinking features demand precise control of etch rate and etch factor. Copper etching baths, using cupric chloride, involve complex chemical equilibria that the currently used semi-chemical monitoring tools, including oxidation.reduction potential, conductivity, and specific gravity, can have difficulty controlling precisely. We report a new monitoring tool, thin-film UV.vis spectroscopy, to support and enhance the existing monitoring parameters. UV.vis can distinguish specific chemical contributions to the etch bath performance and to monitoring parameters, and can contribute to significant improvements in the control of the copper etching system.
- Ball D, Practical Aspects for Subtractive Etching of High Density Interconnects, Chemcut Corporation, 2017 http://www.chemcut.net/technical-info. (Accessed 16 November 2016).
- Wang Z, Che J, Ye C, Hydrometallurgy, 105, 69 (2010)
- LaDou J, Int. J. Hyg. Env. Health., 209, 211 (2006)
- Cakir O, J. Mater. Process. Technol., 175, 63 (2006)
- Keskitalo T, Tanskanen J, Kuokkanen T, Resour. Conserv. Recycl., 49, 217 (2007)
- Lee JC, Zhu T, Jha MK, Kim SK, Yoo KK, Jeong J, Sep. Purif. Technol., 62(3), 596 (2008)
- Patil SA, Yadav RP, IOSR J. Eng., 4, 40 (2014)
- Hu YH, Zhao GP, Xie SL, Yuan GW, Zhang ZX, Electroplat. Finish, 28, 32 (2009)
- Yu M, Zeng X, Song Q, Liu L, Li J, J. Clean Prod., 113, 973 (2016)
- Cakir O, Temel H, Kiyak M, J. Mater. Process. Technol., 162-163, 275 (2005)
- Dietz K, Microsystems, Packaging, Assembly & Circuits Technology Confer- ence, Research Triangle Park, NC, 2008.
- Ueda R, Corros. Eng., 38, 271 (1989)
- Xia F, Yi H, Zeng D, J. Phys. Chem., 113, 14029 (2009)
- Gomes E, Tandy J, Siegel J, Cupric Chloride Etch Regeneration, Technical Report 45, Toxics Use Reduction Institute, Lowell, MA, 1997.
- Ball D, Process Guidelines for Cupric Chloride Etching, Chemcut Corporation, 2017 http://www.chemcut.net/technical-info. (Accessed 16 November 2016).
- Zhang N, Zeng D, Hefter G, Chen Q, J. Mol. Liq., 198, 200 (2014)
- Tunnicliff DD, Anal. Chem., 28, 1657 (1956)
- Bauschlicher CW, Roos BO, J. Chem. Phys., 91, 4785 (1989)
- de Mello PC, Hehenberger M, Larsson S, Zerner M, J. Am. Chem. Soc., 102, 1278 (1980)
- Xia F, Yi H, Zeng D, J. Phys. Chem., 114, 8406 (2009)
- Meng Y, Bard AJ, Anal. Chem., 87, 3498 (2015)
- Yi HB, Xia FF, Zhou QB, Zeng DW, J. Phys. Chem. A, 115(17), 4416 (2011)
- McConnell H, Davison N, J. Am. Chem. Soc., 72, 3168 (1950)
- Klotz IM, Czerlinski GH, Fiess HA, J. Am. Chem. Soc., 80, 2920 (1958)
- Sigwart C, Hemmerich P, Spence JT, Inorg. Chem., 7, 2545 (1968)
- Etch Conditions and Operating Parameters, (2017) http://www.pcbfab.com/ etch-conditions-parameters. (Accessed 16 November 2016).