화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.27, No.6, 325-330, June, 2017
초음파 분무 열분해 공정을 이용한 TiO2와 TiOF2 복합체 분말의 합성과 상 분율에 따른 광학적 성질
Synthesis and Optical Properties of TiO2/TiOF2 Composite Powder with Controlled Phase Fractions via an Ultrasonic Spray Pyrolysis Process
E-mail:
Photoelectron-hole separation efficiency plays an important role in the enhancement of the photocatalytic activity of photocatalysts towards the degradation of organic molecules. In this study, TiO2/TiOF2 heterostructured composite powders with suitable band structures, which structures are able to separate photoelectron-hole pairs, have been synthesized using a simple and versatile ultrasonic spray pyrolysis process. In addition, their phase volume fractions have been controlled by varying the pyrolysis temperature from 400 °C to 800 °C. The structural and optical properties of the synthesized powders have been characterized by X-ray diffraction, scanning electronic microscopy and UV-vis spectroscopy. The powder with a phase volume ratio close to 1, compared with single TiOF2 and other composite powders with different phase volume fractions, was found to have superior photocatalytic activity for the degradation of rhodamine B. This result shows that the TiO2/TiOF2 heterostructure promotes the separation of the photoinduced electrons and holes and that this powder can be applicable to environmental cleaning applications.
  1. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995) 
  2. Lin YM, Li DZ, Hu JH, Xiao GC, Wang JX, Li WJ, Fu XZ, J. Phys. Chem. C, 116, 5764 (2012)
  3. Hyeok C, Yong JK, Rajender SV, Dionysios DD, Chem. Mater., 18, 5377 (2006)
  4. Melhem H, Simon P, Beouch L, Goubard F, Boucharef M, Bin CD, Leconte Y, Ratier B, Herlin-Boime N, Boucle J, Adv. Energy Mater., 1, 908 (2011)
  5. Hernandez-Alonso MD, Fresno F, Suarez S, Coronado JM, Energy Environ. Sci., 2, 1231 (2009)
  6. Zhu K, Liu X, Du J, Tian J, Wang Y, Liu S, Shan Z, J. Mater. Chem. A., 3, 6455 (2015)
  7. Yang H, Zhang X, J. Mater. Chem., 19, 6907 (2009)
  8. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269 (2001)
  9. Irie H, Miura S, Kamiya K, Hashimoto K, Chem. Phys. Lett.
  10. Zhang X, Zhang L, Xie T, Wang D, J. Phys. Chem. C, 113, 7371 (2009)
  11. Huang H, Li D, Lin Q, Zhang W, Shao Y, Chen Y, Sun M, Fu X, Environ. Sci. Technol., 43, 4164 (2009)
  12. Reddy MV, Madhavi S, Rao GVS, Chowdari BVR, J. Power Sources, 162(2), 1312 (2006)
  13. Li B, Wang DK, Wang Y, Zhu BC, Gao Z, Hao QY, Wang YK, Tang KB, Electrochim. Acta, 180, 894 (2015)
  14. He M, Wang ZH, Yan XD, Tian LH, Liu G, Chen XB, J. Power Sources, 306, 309 (2016)
  15. Murphy AB, Sol. Energy Mater. Sol. Cells, 91(14), 1326 (2007)
  16. Wang J, CaO F, Bian Z, Leung MKH, Li H, Nanoscale, 6, 897 (2014)
  17. Zhu J, Zhang D, Bian Z, Li G, Huo Y, Lu Y, Li H, Chem. Commun., 5394 (2009).
  18. Vasanth Kumar K, Porkodi K, Rocha F, Catal. Commun., 9, 82 (2008)