Applied Chemistry for Engineering, Vol.28, No.3, 299-305, June, 2017
전자빔이 조사된 활성탄소섬유 기반 가스센서의 일산화질소 감지 특성
Nitric Oxide Sensing Property of Gas Sensor Based on Activated Carbon Fiber Radiated by Electron-beam
E-mail:
초록
활성탄소섬유가 전사선 조사에 의해 표면 개질되었고, NO가스 감지 능력에 미치는 영향을 살펴보기 위하여 이를 가스 센서 전극으로 이용하였다. XPS 분석결과는 전자선에 의하여 표면처리된 활성탄소섬유의 산소 성분이 감소하였으며 표면의 sp2 결합탄소가 증가한 것을 보여주었다. 이러한 결과는 전자빔 조사에 따른 활성탄소섬유 표면의 구조적 변형 때문으로 사료된다. 100 kGy의 전자빔이 조사된 활성탄소섬유 전극의 NO가스 민감도는 약 4%에서 약 8%로 크게 증가 하였고, 그 감지 시간 또한 약 360 s에서 120 s로 의미 있게 향상되었다. 이러한 결과는 활성탄소섬유의 전자빔 조사에 의하여 sp2 탄소 결합의 증가때문에 기인한 것으로, 이는 NO가스 센싱에 대한 전극저항 변화에 상당히영향을 주었다.
Activated carbon fibers (ACFs) were surface-modified by electron beam (E-beam) irradiation and used as a gas sensor electrode to investigate the effect of E-beam on nitric oxide (NO) gas sensing performance. XPS results showed that the oxygen component of ACFs surface treated by E-beam decreased and sp2 bonded carbon of ACFs surface increased. These results were attributed to the structural transformation of ACFs surface irradiated by E-beam. NO gas sensitivity of the electrode composed of ACFs irradiated by100 kGy increased from about 4% to 8%, and the response time was also meaningfully enhanced from 360 s to 120 s. This is due to the fact that the sp2 carbon bond increased by E beam irradiation of activated carbon fibers, which significantly affects the resistance change of the electrode in NO gas sensing.
- Zhang J, Zhang Y, Pan Z, Yang S, Shi J, Li S, Min D, Li X, Wang X, Liu D, Yang A, Appl. Phys. Lett., 107, 093104 (2015)
- Ko G, Kim HY, Ahn J, Park YM, Lee KY, Kim J, Curr. Appl. Phys., 10(4), 1002 (2010)
- Jung MJ, Park MS, Lee S, Lee YS, Appl. Chem. Eng., 27(3), 319 (2016)
- Kim JG, Kang SC, Shin E, Kim DY, Lee JH, Lee YS, Appl. Chem. Eng., 23(1), 47 (2012)
- Lu GH, Ocola LE, Chen JH, Adv. Mater., 21(24), 2487 (2009)
- Wang C, Yin L, Zhang L, Xiang D, Gao R, Sensors, 10, 2088 (2010)
- Im JS, Kang SC, Lee SH, Lee YS, Carbon, 48, 2573 (2010)
- Kang SC, Im JS, Lee SH, Bae TS, Lee YS, Colloids Surf. A: Physicochem. Eng. Asp., 384, 297 (2011)
- Kang SC, Im JS, Lee YS, Appl. Chem. Eng., 22(3), 243 (2011)
- Kim SH, Noh YJ, Kwon SN, Kim BN, Lee BC, Yang SY, Jung CH, Na SI, J. Ind. Eng. Chem., 26, 210 (2015)
- Benbettaieb N, Karbowiak T, Brachais CH, Debeaufort F, Food Chem., 195, 11 (2016)
- Sui X, Xu Z, Hu C, Chen L, Liu L, Kuang L, Ma M, Zhao L, Li J, Deng H, Compos. Sci. Technol., 130, 46 (2016)
- Kim JG, Chung CH, Lee YS, Appl. Chem. Eng., 22(2), 138 (2011)
- Roh JS, Carbon Lett., 9, 127 (2008)
- Shimodaira N, Masui A, J. Appl. Phys., 92, 902 (2002)
- Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R, Phys. Chem. Chem. Phys., 9, 1276 (2007)
- Hu N, Wang Y, Chai J, Gao R, Yang Z, Kong ESW, Zhang Y, Sens. Actuators B-Chem., 163, 107 (2012)
- Kim JG, Im JS, Bae TS, Kim JH, Lee YS, J. Ind. Eng. Chem., 19(1), 94 (2013)
- Talukdar Y, Rashkow JT, Lalwani G, Kanakia S, Sitharaman B, Biomaterials, 35, 4863 (2014)
- Shangguan J, Li CH, Miao MQ, Yang Z, New Carbon Mater., 23, 37 (2008)
- Jung MJ, Park MS, Lee YS, J. Nanomater., 2015, 1 (2015)
- Gupta S, Patel RJ, Smith N, Giedd RE, Hui D, Diam. Relat. Mat., 16, 236 (2007)
- Kim BH, Lee DH, Yang KS, Lee BC, Kim YA, Endo M, Appl. Mater. Interfaces, 3, 119 (2011)
- Nishi Y, Mizutani A, Uchida N, J. Thermoplast. Compos. Mater., 17, 289 (2004)
- Hwang SH, Park HS, Kim DW, Jo YM, J. Korean Soc. Atmos. Environ, 31, 538 (2015)
- Evora MC, Klosterman D, Lafdi K, Li L, Abot JL, Carbon, 48, 2037 (2010)
- Evora MC, Klosterman D, Lafdi K, Li L, Silva LGA, Radiat. Phys. Chem., 84, 105 (2013)
- Abdulla S, Mathew TL, Pullithadathil B, Sens. Actuators B-Chem., 221, 1523 (2015)
- Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH, ACS Nano, 3, 301 (2009)
- Cho WS, Moon SI, Paek KK, Lee YH, Park JH, Ju BK, Sens. Actuators B-Chem., 119, 180 (2006)
- Hu N, Yang Z, Wang Y, Zhang L, Wang Y, Huang X, Wei H, Wei L, Zhang Y, Nanotechnology, 25, 025502 (2014)