화학공학소재연구정보센터
Macromolecular Research, Vol.25, No.5, 391-399, May, 2017
Effects of Processing Conditions and Crystallization on Dynamic Relaxations in Semicrystalline Poly(vinylidene fluoride) Films
E-mail:
The dielectric relaxation of semicrystalline poly(vinylidene fluoride) films containing different crystalline phase structures was investigated using broadband dielectric spectroscopy. The molecular origins of the dielectric relaxation were assigned based on dynamic mechanical analysis and their correlation with findings obtained from Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, small-angle X-ray scattering, and differential scanning calorimetry. Three dielectric relaxation processes were observed for all samples and they were attributed to the local motion of amorphous chains (β), the segmental relaxation of amorphous chains (α1), and the process arising from Maxwell-Wagner-Sillars interfacial polarization (αMWS). In addition, poly(vinylidene fluoride) composing the α crystalline phase exhibited a strong relaxation of the local conformational rearrangement of the α crystalline phases (α2). The correlation between crystal structure and the dielectric relaxations indicates that semicrystalline poly(vinylidene fluoride) prepared from different processes contained the α crystalline phase as defects except for from the melt process.
  1. Scheirs J, Modern Fluoropolymers: High Performance Polymers for Diverse Applications, John Wiley & Sons, Chichester, 1997.
  2. Drobny JG, Technology of Fluoropolymers, CRC Press LLC, New York, 2001.
  3. Zhang S, Zou C, Zhou X, Kushner D, Proceeding of CARTS, Electronic Components Industry Association (ECIA), Jacksonville, 2011, p 381.
  4. Pei Y, Zeng XC, J. Appl. Phys., 109, 093514 (2011)
  5. Liu F, Hashim NA, Liu YT, Abed MRM, Li K, J. Membr. Sci., 375(1-2), 1 (2011)
  6. Lund A, Hagstrom B, J. Appl. Polym. Sci., 116(5), 2685 (2010)
  7. Shah D, Maiti P, Gunn E, Schmidt DF, Jiang DD, Batt CA, Giannelis ER, Adv. Mater., 16(14), 1173 (2004)
  8. Jiang XB, Zhao XJ, Peng GR, Liu WP, Liu K, Zhan ZJ, Curr. Appl. Phys., 17(1), 15 (2017)
  9. Defebvin J, Barrau S, Stoclet G, Rochas C, Lefebvre JM, Polymer, 84, 148 (2016)
  10. Kim BS, Lee MK, Lee J, Macromol. Res., 21(2), 194 (2013)
  11. He X, You K, Appl. Phys. Lett., 89, 112909 (2006)
  12. Kim TH, Jee KY, Lee YT, Macromol. Res., 23(7), 592 (2015)
  13. Pramod K, Gangineni RB, Bull. Mat. Sci., 38, 1093 (2015)
  14. Gregorio R, J. Appl. Polym. Sci., 100(4), 3272 (2006)
  15. Inoue M, Tada Y, Suganuma K, Ishiguro H, J. Appl. Polym. Sci., 111(6), 2837 (2009)
  16. Nakhmanson SM, Korlacki R, Johnston JT, Ducharme S, Phys. Rev. B, 81, 174120 (2010)
  17. Ramer NJ, Marrone T, Stiso KA, Polymer, 47(20), 7160 (2006)
  18. Gupta A, Agarwal P, Bee S, Tandon P, Gupta VD, Polym. Sci., 53, 375 (2011)
  19. Gan WC, Abd Majid WH, Furukawa T, Polymer, 82, 156 (2016)
  20. Hall IH, Structure of Crystalline Polymers, Elsevier Applied Science Publishers, New York, 1984.
  21. Linares A, Nogales A, Sanz A, Ezquerra TA, Pieruccini M, Phys. Rev. E, 82, 031802 (2010)
  22. Baratian S, Hall ES, Lin JS, Xu R, Runt J, Macromolecules, 34(14), 4857 (2001)
  23. Ozkazanc E, Guney HY, Oskay T, Tarcan E, J. Appl. Polym. Sci., 109(6), 3878 (2008)
  24. Chang TC, Petchsuk A, Macromolecules, 3.5, 7678 (2002)
  25. Zhang SH, Klein RJ, Ren KL, Chu BJ, Zhang X, Runt J, Zhang QM, J. Mater. Sci., 41(1), 271 (2006)
  26. Furukawa T, Wang TT, in Applications of Ferroelectric Polymers, Wang TT, Herbert JM, Glass AM, Eds., Blackie and Son, 1988, Ch. 5, p 92.
  27. Davis GT, in Applications of Ferroelectric Polymers, Wang TT, Herbert JM, Glass AM, Eds., Blackie and Son, 1988, Ch. 4, p 53.
  28. Latour M, Anis K, IEEE Trans. Electr. Insul., 28, 111 (1993)
  29. Loufakis K, Wunderlich B, Macromolecules, 20, 2474 (1987)
  30. Kalfoglou N, Williams HL, J. Appl. Polym. Sci., 17, 3367 (1973)
  31. Atorngitjawat P, Pipatpanyanugoon K, Aree T, Polym. Adv. Technol., 25, 1027 (2014)
  32. Wubbenhorst M, van Turnhout J, J. Non-Cryst. Solids, 305, 40 (2002)