화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.55, No.3, 385-394, June, 2017
닭털로 제조한 접착제의 반응기작 및 경화 특성과 이를 이용하여 제조한 중밀도섬유판의 접착 특성
Reaction Mechanism and Curing Characteristics of Chicken Feather-Based Adhesives and Adhesive Properties of Medium-Density Fiberboard Bonded with the Adhesive Resins
E-mail:
초록
도계부산물인 닭털(CF)의 알칼리 및 산 가수분해물과 폼알데히드계 가교제를 혼합하여 조제한 접착 의 반응기작 및 경화특성을 조사하였다, 또한 이를 적용시켜 제조한 중밀도섬유판(MDF)의 물성 및 폼알데히드 방산량 측정 결과를 토 대로 CF 접착제의 목질계 판상재 제조를 위한 분사형 접착제로서 적용 가능성을 확인하기 위하여 본 구를 수행하 였다. 고형분 함량이 40% 이상인 CF 접착제는 상온에서 점도가 높았으나, 50 °C에서 측정한 점도는 300~660 m·Pa·s로 측정되어 낮은 점도를 요구하는 분사형 접착제로 적용이 가능하였다. 적외선 분광기 분석을 통하여 알데히드계 가 교제의 사용에 따른 methylol기의 부가 및 축합반응을 확인하였다. 시차주사 열량계 분석을 통하여 CF 접착제가 현재 목질계 판상재 제조에 사용되고 있는 요소수지(C-UF)와 비교하여 높은 열압온도 또는 긴 경화시간이 필요한 것으로 조사되었다. 5% NaOH 농도의 수용액에서 가수분해된 CF 가수분해물(이하 CF-AK 5%)과 formaldehyde/phenol 몰비 가 2.5인 phenol-formaldehyde prepolymer (PF-2.5)로 조제한 접착제를 사용하고 8분간 열압하여 조한 MDF에서 높 은 휨강도(MOR)와 박리강도(IB)를 보였다. 또한 이 접착제로 제조한 MDF의 MOR과 IB는 대부분의 착제 조제 및 열압 조건에서 C-UF로 제조한 MDF보다 높았다. 이 측정치를 KS 규격과 비교하였을 때, IB는 모든 건에서 기준을 상회하였으나, MOR은 CF-AK-5%와 PF-2.5로 조제한 접착제를 사용하고 8분간 열압하여 제조한 MD 를 제외하고 그 기준을 만족하지 못하였으며, 24-TS도 모든 조건에서 기준을 만족하지 못하였다. 그러나 MDF 제조시 보드의 목표밀 도를 높이거나 내수성 부여를 위하여 접착제에 첨가하는 wax emulsion의 양을 증가시킬 경우 MOR과 24-TS는 충분 히 향상될 것으로 생각한다. 한편, MDF 제조에 있어 CF 접착제의 사용은 폼알데히드 방산량을 크게 소시켰으며, 따라서 적절한 조건에서 조제된 CF 접착제는 목질계 판상재 제조를 위한 분사형 접착제로서 적용이 가 할 것으로 판 단된다.
In this study, reaction mechanism and curing characteristics of adhesives formulated with NaO - and H2SO4-hydrolyzed chicken feather (CF) and formaldehyde-based crosslinkers were investigated by FT-IR and DSC. In addition, adhesive properties and formaldehyde emission of medium-density fiberboards (MDF) applied with the adhesives were measured. CF-based adhesives having a solid content of 40% and over were very viscous at 25 °C, but the viscosity reduced to 300~660 m·Pa·s at 50 °C. Consequently, the adhesives could be used as a sprayable resin. Through the FT-IR spectra of liquid and cured CF-based adhesives, addition reaction of methylol group and condensation reaction between the functional groups with the use of formaldehyde-based crosslinkers were identified. From the analysis of DSC, it was elucidated for CF-based adhesives to require a higher pressing temperature or longer pressing time comparing to commercial urea-formaldehyde (C-UF) resin. MDF bonded with CF-based adhesives, which was formulated with 5% NaOH-hydrolyzed CF (CF-AK-5%) and PF of formaldehyde to phenol mole ratio of 2.5 (PF-2.5), and pressed for 8 min had higher MOR and IB than those with other CF-based adhesives. MOR and IB of MDF bonded with the CFbased adhesives regardless of formulation type and pressing time were higher than those with C UF resin. When the values compared with the minimum requirements of KS standard, IB exceeded the KS standard in all formulations and pressing time, but MOR of only MDF bonded with CF-AK-5% and PF-2.5 and pressed for 8 min satisfied the KS standard. What was worse, 24-TS of MDF bonded with all CF-based adhesives did not satisfied the KS standard. However, MOR and 24-TS can be improved by increasing the target density of MDF or the amount of wax emulsion, which is added to improve the water resistance of MDF. Importantly, the use of CF-based adhesives decreased greatly the formaldehyde emission. Based on the results, we reached the conclusion that CF-based adhesives formulated under proper conditions had a potential as a sprayable resin for the production of wood panels.
  1. Bello D, Herrick C, Smith T, Woskie S, Streicher R, Cullen M, Liu Y, Redlich C, Environ. Health Perspect., 115, 328 (2007)
  2. International Agency for Research on Cancer, IARC classifies formaldehyde as carcinogenic to humans, http://www.iarc.fr/en/ mediacentre/pr/2004/pr153.html(2004).
  3. Ministry of Environment, Policy for managing the indoor air-quality of public facilities, ME No. 6911, Sejong, Republic of Korea(2003).
  4. Liu Y, Li K, Int. J. Adhes. Adhes., 27, 59 (2007)
  5. Oh Y, Seller T, Kim MG, Strickland RC, For. Prod. J., 44(2), 25 (1994)
  6. Yang KK, Wang XL, Wang YZ, J. Ind. Eng. Chem., 13(4), 485 (2007)
  7. Olivares M, Aceituno H, Neiman G, Rivera E, Seller T, For. Prod. J., 45(1), 63 (1995)
  8. Barbosa AP, Mano EB, Andrade CT, For. Prod. J., 50(9), 89 (2000)
  9. Rho J, Lee J, J. Adhes., 12(4), 125 (2011)
  10. Yang I, Ahn S, Choi IG, Kim HY, Oh S, J. Ind. Eng. Chem., 15(3), 398 (2009)
  11. Yang I, Han GS, Ahn SH, Choi IG, Kim YH, Oh SC, J. Adhes., 90(4), 279 (2014)
  12. Yang I, Han GS, Choi IG, Kim YH, Ahn SH, Oh SC, J. of Korean Wood Science & Technology, 40(3), 177 (2012)
  13. Yang I, Lee KH, Oh SC, J. of Korean Wood Science & Technology, 41(4), 293 (2013)
  14. Pizzi A, J. Adhes. Sci. Technol., 20(8), 829 (2006)
  15. Yoon JH, Woo JW, Rho HJ, Ahn JR, Yu SJ, Lee YB, Moon CK, Kim SB, Korean J. Chem. Eng., 25(1), 134 (2008)
  16. Yang I, Kuo ML, Myers D, Pu A, J. Wood Science, 52, 503 (2006)
  17. Lambuth AL, Protein adhesives for wood, in Wood Adhesives: Chemistry and Technology, Vol. II. Marcel Dekker, Inc., New York, NY(1989).
  18. Wang W, Zhao Z, Gao Z, Gou M, Bioresour. Technol., 6, 3339 (2011)
  19. Wang C, Wu J, Int. J. Adhes. Adhes., 36, 8 (2014)
  20. Park SK, Bae DH, Hettiarachchy NS, J. Am. Oil Chem. Soc., 77, 1223 (2000)
  21. Jiang Z, Qin D, Hse C, Kuo ML, Luo Z, Wang G, Yu Y, J. Wood Chemistry and Technology, 28, 240 (2008)
  22. Pearson CL, “Animal Glues and Adhesives,” Marcel Dekker, Inc., New York, NY, 26-37(2003).
  23. E-Thaher N, Mekonnen T, Mussone P, Bressler D, Choi P, Ind. Eng. Chem. Res., 52(14), 4987 (2013)
  24. Wang Y, Mo X, Sun XS, Wang DH, J. Appl. Polym. Sci., 104(1), 130 (2007)
  25. El-Thaher N, Mekonnen T, Mussone P, Bressler D, Choi P, Ind. Eng. Chem. Res., 52(24), 8189 (2013)
  26. Jang Y, Huang J, Li K, Int. J. Adhes. Adhes., 31, 754 (2011)
  27. Woo BJ, Kim HJ, Imbalance of supply and demand for chicken meat and its spread effect, Korea Rural Economic Institute, Seoul(2015).
  28. Lee JG, Lee SM, J. Aquaculture, 11(4), 421 (1998)
  29. Meeker DL, Hamilton CL, “An Overview of the Rendering Industry,” National Renderers Association, Alexandria, VA(2006).
  30. http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0016/101185/ feed-controls-stopping-bse-mad-cow-disease.pdf.
  31. http://ec.europa.eu/food/food/biosafety/tse_bse/docs/roadmap_2_en.pdf.
  32. https://www.daera-ni.gov.uk/articles/bse-feed-controls.
  33. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch. cfm?CFRPart=589&showFR=1.
  34. Park DH, Yang I, Choi WS, Oh SC, Ahn DU, Han GS, J. Korean Wood Science & Technology, 45(1), 126 (2017)
  35. Kwon KT, Jung GW, Chun BS, Korean Chem. Eng. Res., 48(6), 474 (2010)
  36. American Society for Testing and Materials, Standard test methods for determination of percent nonvolatile content of liquid phenolic resins used for wood laminating. ASTM D 4426, ASTM, Philadelphia, PA(1993).
  37. Korean Agency for Technology and Standards, Fiberboards, KSC, KS F 3200, Eumseong, Chungbuk, Republic of Korea(2011).
  38. Korea Forest Research Institute, Determination of formaldehyde emission for wood panels, KFRI, KFRI 2014-03, Seoul, Republic of Korea(2014).
  39. Ahn SH, J. Korean Wood Science & Technology, 43(3), 390 (2015)
  40. Mun SS, Kim JG, Lee SU, Hong IS, Introduction to Spectroscopy, 4th Ed., Sciplus, Seoul, 13-81(2010).