화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.6, 1748-1755, June, 2017
Ultrasonic-assisted leaching kinetics in aqueous FeCl3-HCl solution for the recovery of copper by hydrometallurgy from poorly soluble chalcopyrite
E-mail:
We studied the ultrasonic effect on the leaching of copper from poorly soluble chalcopyrite (CuFeS2) mineral in aqueous FeCl3 solution. The leaching experiment employed two methods, basic leaching and ultrasonic-assisted leaching, and was conducted under the optimized experimental conditions: a slurry density of 20 g/L in 0.1M FeCl3 reactant in a solution of 0.1M HCl, with an agitation speed of 500 rpm and in the temperature range of 50 to 99 °C. The maximum yield obtained from the optimized basic leaching was 77%, and ultrasonic-assisted leaching increased the maximum copper recovery to 87% under the same conditions of basic leaching. In terms of the leaching mechanism, the overall reaction rate of basic leaching is determined by the diffusion of both the product and ash layers based on a shrinking core model with a constant spherical particle; however, in the case of ultrasonic-assisted leaching, the leaching rate is determined by diffusion of the ash layer only by the removal of sulfur adsorbed on the surface of chalcopyrite mineral.
  1. Li Y, Kawashima N, Li J, Chandra AP, Gerson AR, Adv. Colloid Interface Sci., 197, 1 (2013)
  2. Xian YJ, Wen SM, Deng JS, Liu J, Nie Q, Can. Metall. Q., 15, 133 (2012)
  3. Hackl RP, Dreisinger DB, Peters E, King JA, Hydrometallurgy, 39, 25 (1995)
  4. Cordoba EM, Munoz JA, Blazquez ML, Gonzalez F, Ballester A, Miner. Eng., 22(3), 229 (2009)
  5. Stott MB, Watling HR, Franzmann PD, Sutton D, Miner. Eng., 13, 1117 (2000)
  6. Parker A, Klauber C, Kougianos A, Watling HR, van Bronswijk W, Hydrometallurgy, 71, 265 (2003)
  7. Viramontes-Gamboa G, Pena-Gomar MM, Dixon DG, Hydrometallurgy, 105, 140 (2010)
  8. Carneiro MFC, Leao VA, Hydrometallurgy, 87, 73 (2007)
  9. HAVLIK T, SKROBIAN M, BALAZ P, KAMMEL R, Int. J. Miner. Process., 43(1), 61 (1995)
  10. HAVLIK T, KAMMEL R, Miner. Eng., 8(10), 1125 (1995)
  11. Al-Harahsheh M, Kingman S, Al-Harahsheh A, Hydrometallurgy, 91, 89 (2008)
  12. Bonan M, Demarthe JM, Renon H, Baratin F, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 12B, 269 (1981)
  13. Skrobian M, Havlik T, Ukasik M, Hydrometallurgy, 77, 109 (2005)
  14. Hirato T, Majima H, Awakura Y, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 18B, 31 (1987)
  15. Aydogan S, Ucar G, Canbazoglu M, Hydrometallurgy, 81, 45 (2006)
  16. Antonijevic MM, Jankovic ZD, Dimitrijevic MD, Hydrometallurgy, 71, 329 (2004)
  17. Havlik T, Laubertova M, Miskufova A, Kondas J, Vranka F, Hydrometallurgy, 77, 51 (2005)
  18. Guan YC, Han KN, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 23B, 979 (1997)
  19. Juanqin X, Xi L, Yewei D, Weibo M, Yujie W, Jingxian L, Chinese J. Chem. Eng., 18, 948 (2010)
  20. Chen SG, Sanghai Nonferrous Metals, 3, 142 (2003)
  21. Kar RN, Sulka LB, Swamy KM, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 27, 351 (1996)
  22. Pesic B, Zhou TL, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 23B, 13 (1992)
  23. Levenspiel O, Chemical Reaction Engineering, 3rd Ed., Wiley, NewYork (2003).
  24. Schmidt LD, The Engineering of Chemical Reactions, 2nd Ed., Oxford University Press (2005).
  25. Avrami M, J. Chem. Phys., 7, 1103 (1939)
  26. Dickinson CF, Heal GR, Thermochim. Acta, 340, 89 (1999)
  27. Orfao JJM, Martins FG, Thermochim. Acta, 390(1-2), 195 (2002)
  28. Akinlua TN, Ajayi TR, Fuel, 87, 1469 (2008)
  29. O’Malley ML, Liddell KC, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 18B, 505 (1987)
  30. Maurice D, Hawk JA, Hydrometallurgy, 51, 371 (1999)