화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.50, 199-212, June, 2017
Promotional effect of Mo and Ni in plasma-synthesized Co.Fe/C bimetallic nano-catalysts for Fischer.Tropsch synthesis
E-mail:
Two carbon-supported Fischer.Tropsch Synthesis (FTS) catalysts with ternary metallic formulations (10% Mo.70% Co.20% Fe and 10% Ni.70% Co.20% Fe) were synthesized through suspension plasma-spray (SPS) technology. Their average particle size determined by Transmission Electron Microscopy was 8.4 and 13.3 nm respectively and their BET specific surface areas were between 69.85 m2 g-1. As their analogous monometallic and bimetallic formulations presented in previous publications, these catalysts were both non-porous and nanometric with Scanning Electron Microscopy showing uniform metalnanoparticle distribution in the carbon-support matrix. FTS test conditions in a 3-phase continuously stirred-tank slurry reactor operated for 24 h were: 260 °C, 2 MPa pressure, H2:CO = 2, gas hourly specific velocity = 3600 cm3 h-1 g-1 of catalyst. Basing catalyst performance on the bimetallic 80% Co.20% Fe/C catalyst, Ni-addition enhanced catalyst activity from ∼42 to 50% CO conversion, and boosted selectivity towards gasoline fraction (C5-C12) from ∼19 to 50%. Enriching the catalyst-surface acidity by Mopromotion improved selectivity for both gasoline-fraction (19 →33%) and the C5-C20 fraction (74 → 87%) and lowered H2O production by 30%, although at lower CO conversion (∼38%). The catalysts’ a values were ∼0.8 in the C10+ region, and from mass balance their estimated H2 efficiency decreased in the order of Mo.Co.Fe/C >> Co-Fe/C > Ni.Co.Fe/C.
  1. Xiong H, Jewell LL, Coville NJ, ACS Catal., 5, 2640 (2015)
  2. Li ZR, Fu YL, Jiang M, Hu TD, Liu T, Xie YN, J. Catal., 199(2), 155 (2001)
  3. Iqbal S, Davies TE, Morgan DJ, Karim K, Hayward JS, Bartley JK, Taylor SH, Hutchings GJ, Catal. Today, 275, 35 (2016)
  4. Fu TJ, Li ZH, Chem. Eng. Sci., 135, 3 (2015)
  5. Dun JW, Gulari E, Ng KYS, Appl. Catal., 15, 247 (1985)
  6. Ma WP, Kugler EL, Dadyburjor DB, Energy Fuels, 21(4), 1832 (2007)
  7. Chen J, Xue C, Ramasubramaniam R, Liu H, Carbon, 44, 2142 (2006)
  8. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu XD, Kapteijn F, van Dillen AJ, de Jong KP, J. Am. Chem. Soc., 128(12), 3956 (2006)
  9. Jankhah S, Abatzoglou N, Gitzhofer F, Blanchard J, Oudghiri-Hassani H, Chem. Eng. J., 139(3), 532 (2008)
  10. Dlamini MW, Kumi DO, Phaahlamohlaka TN, Lyadov AS, Billing DG, Jewell LL, Coville NJ, ChemCatChem, 7, 3000 (2015)
  11. Moussa SO, Panchakarla LS, Ho MQ, El-Shall MS, ACS Catal., 4, 535 (2014)
  12. Cheng Y, Lin J, Xu K, Wang H, Yao X, Pei Y, Yan S, Qiao M, Zong B, ACS Catal., 6, 389 (2016)
  13. Almkhelfe H, Carpena-Nunez J, Back TC, Amama PB, Nanoscale, 8, 13476 (2016)
  14. Dry ME, Catal. Today, 71(3-4), 227 (2002)
  15. Pinna D, Tronconi E, Lietti L, Zennaro R, Forzatti P, J. Catal., 214(2), 251 (2003)
  16. Davis SM, Ryan DF, Distillate fuel production from Fischer-Tropsch wax, in: US-Patent No. 5378348A, Exxon Research and Engineering Company, USA (1995).
  17. Bekker M, Louw NR, van Rensburg VJJ, Potgieter J, Int. J. Cosmet. Sci., 35, 99 (2013)
  18. Dupain X, Krul RA, Schaverien CJ, Makkee M, Moulijn JA, Appl. Catal. B: Environ., 63(3-4), 277 (2006)
  19. Davis BH, Ind. Eng. Chem. Res., 46(26), 8938 (2007)
  20. Yang J, Ma WP, Chen D, Holmen A, Davis BH, Appl. Catal. A: Gen., 470, 250 (2014)
  21. Shiva M, Atashi H, Tabrizi FF, Mirzaei AA, Arsalanfar M, J. Ind. Eng. Chem., 19(1), 172 (2013)
  22. Morales F, de Smit E, de Groot FMF, Visser T, Weckhuysen BM, J. Catal., 246(1), 91 (2007)
  23. Zare A, Zare A, Shiva M, Mirzaei AA, J. Ind. Eng. Chem., 19(6), 1858 (2013)
  24. Pour AN, Shahri SMK, Zamani Y, Zamanian A, J. Nat. Gas Chem., 19, 193 (2010)
  25. Tao Z, Yang Y, Zhang C, Li T, Wang J, Wan H, Xiang H, Li Y, Catal. Commun., 7, 1061 (2006)
  26. Mirzaei AA, Kiai RM, Atashi H, Arsalanfar M, Shahriari S, J. Ind. Eng. Chem., 18(4), 1242 (2012)
  27. Luo MS, Davis BH, Appl. Catal. A: Gen., 246(1), 171 (2003)
  28. Escalona N, Medina C, Garcia R, Reyes P, Catal. Today, 143, 76 (2009)
  29. Tao Z, Yang Y, Zhang C, Li T, Ding M, Xiang H, Li Y, J. Nat. Gas Chem., 16, 278 (2007)
  30. Chu W, Chernavskii PA, Gengembre L, Pankina GA, Fongarland P, Khodakov AY, J. Catal., 252(2), 215 (2007)
  31. Yang Y, Xiang HW, Xu YY, Bai L, Li YW, Appl. Catal. A: Gen., 266(2), 181 (2004)
  32. Jong SJ, Cheng SF, Appl. Catal. A: Gen., 126(1), 51 (1995)
  33. Pour AN, Housaindokht MR, Tayyari SF, Zarkesh J, Alaei MR, J. Nat. Gas Sci. Eng., 2, 61 (2010)
  34. Wang C, Xu L, Wang Q, J. Nat. Gas Chem., 12, 10 (2003)
  35. Vahid S, Mirzaei AA, J. Ind. Eng. Chem., 20(4), 2166 (2014)
  36. Arsalanfar M, Mirzaei AA, Bozorgzadeh HR, Samimi A, Ghobadi R, J. Ind. Eng. Chem., 20(4), 1313 (2014)
  37. Qin SD, Zhang CH, Xu J, Wu BS, Xiang HW, Li YW, J. Mol. Catal. A-Chem., 304(1-2), 128 (2009)
  38. Rytter E, Skagseth TH, Eri S, Sjastad AO, Ind. Eng. Chem. Res., 49(9), 4140 (2010)
  39. Li TZ, Wang HL, Yang Y, Xiang HW, Li YW, Fuel Process. Technol., 118, 117 (2014)
  40. Bengoa JF, Alvarez AM, Cagnoli MV, Gallegos NG, Marchetti SG, Appl. Catal. A: Gen., 325(1), 68 (2007)
  41. Blanchard J, Abatzoglou N, Eslahpazir-Esfandabadi R, Gitzhofer F, Ind. Eng. Chem. Res., 49(15), 6948 (2010)
  42. Aluha J, Boahene P, Dalai A, Hu YF, Bere K, Braidy N, Abatzoglou N, Ind. Eng. Chem. Res., 54(43), 10661 (2015)
  43. Aluha J, Braidy N, Dalai A, Abatzoglou N, Can. J. Chem. Eng., 94(8), 1504 (2016)
  44. Aluha J, Braidy N, Dalai A, Abatzoglou N, Low-temperature Fischer-Tropsch synthesis with carbon-supported nanometric iron-cobalt catalysts, 23rd European Biomass Conference and Exhibition, Vienna, Austria, 1.4 June, 2015, pp. 988.
  45. Rutkovskii AE, Vishnyakov LR, Chekhovskii AA, Kirkun NI, Powder Metall., 39, 207 (2009)
  46. Liu CJ, Vissokov GP, Jang BWL, Catal. Today, 72(3-4), 173 (2002)
  47. Enger BC, Holmen A, Catal. Rev.-Sci. Eng., 54(4), 437 (2012)
  48. Zaman S, Smith KJ, Catal. Rev.-Sci. Eng., 54(1), 41 (2012)
  49. Vo DVN, Adesina AA, Appl. Catal. A: Gen., 399(1-2), 221 (2011)
  50. Cooper CG, Nguyen TH, Lee YJ, Hardiman KM, Safinski T, Lucien FP, Adesina AA, Catal. Today, 131(1-4), 255 (2008)
  51. Aluha J, Abatzoglou N, Biomass Bioenerg., 95, 330 (2016)
  52. Aluha J, Bere K, Abatzoglou N, Gitzhofer F, Plasma Chem. Plasma Process., 36(5), 1325 (2016)
  53. Sanpo N, Springer Brief (2014) p. 31.
  54. van der Laan GP, Beenackers AACM, Ind. Eng. Chem. Res., 38(4), 1277 (1999)
  55. Bartholomew CH, Farrauto RJ, Fundamentals of Industrial Catalytic Processes, John Wiley & Sons, Inc, Hoboken, New Jersey (USA), 2006.
  56. Khassin AA, Yurieva TM, Parmon VN, React. Kinet. Catal. Lett., 64, 55 (1998)
  57. Mansouri M, Atashi H, Tabrizi FF, Mirzaei AA, mansouri G, J. Ind. Eng. Chem., 19(4), 1177 (2013)
  58. Oshikawa K, Nagai M, Omi S, J. Phys. Chem. B, 105(38), 9124 (2001)
  59. Baltrusaitis J, Mendoza-Sanchez B, Fernandez V, Veenstra R, Dukstiene N, Roberts A, Fairley N, Appl. Surf. Sci., 326, 151 (2015)
  60. den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Froseth V, Holmen A, de Jong KP, J. Am. Chem. Soc., 131(20), 7197 (2009)
  61. Wang L, Zhang GH, Wang, JS, Chou KC, J. Phys. Chem., 120, 4097 (2016)
  62. Pour AN, Housaindokht MR, Babakhani EG, Irani M, Shahri SMK, J. Ind. Eng. Chem., 17(3), 596 (2011)
  63. Fajin JLC, Cordeiro MNDS, Gomes JRB, Catalysts, 5, 3 (2015)
  64. Dry ME, J. Mol. Catal., 17, 133 (1982)
  65. Tavakoli A, Sohrabi M, Kargari A, Chem. Eng. J., 136(2-3), 358 (2008)