화학공학소재연구정보센터
Polymer, Vol.114, 103-112, 2017
Development of structure-property relationships that allow independent control of glass transition temperature, melting temperature, and rheology in a library of bio-based succinate polyester polyols
A library of 20 bio-based succinate (SA) diol, co-diol, and co-diacid polyester polyols (PESPs) was generated and characterized, giving detailed understanding for tuning of their thermal transitions and rheological parameters. SA and 1,3-propanediol, 1,4-butanediol (BDO), 1,6-hexanediol, 2,2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, diethylene glycol (DEG), adipic acid, or sebacic acid, and the blended diols were oligomerized to 1000 and 2000 Da M-n. The SA PESP melting point and its ability to crystallize can be set by controlling the structures and ratios of co-diols or co-diacids. We also show that the PESPs follow the expected Arrhenius temperature-viscosity relationship, but with a clear break in activation energy between PESPs with and without pendent methyl substituents and with DEG. PESP glass transition temperature, melting points, and rheology can be controlled independently by use of comonomers with and without pendent methyl groups and with DEG. (C) 2017 Elsevier Ltd. All rights reserved.