Molecular Crystals and Liquid Crystals, Vol.642, No.1, 9-17, 2017
Polymer electrolyte liquid crystal mixtures as phase-dependent thermoelectric materials
Organic thermoelectric materials have gained a trajectory in recent years given its advantages of processability, low cost and flexibility. In this paper, polymer electrolyte liquid crystal (PELC) mixtures composed of polyvinyl alcohol, potassium iodide, and 4-Cyano-4'-pentylbiphenyl (5CB) liquid crystal are fabricated, the 5CB acts as a temperature switch', i.e., a strong correlation between the thermoelectric properties and the transition from Ne-Iso transition of the 5CB, is observed. The electrical conductivity and Seebeck coefficient of the PELC mixtures both decrease above the Ne-Iso transition temperature. This thermoelectric behavior is discussed in terms of the carrier concentration, carrier mobility, and order-disorder transition.