화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.121, No.5, 1158-1167, 2017
Study of the Impact of Polyanions on the Formation of Lipid Bilayers on Top of Polyelectrolyte Multilayers with Poly(allylamine hydrochloride) as the Top Layer
The impact of polyanions on the formation of lipid bilayers on top of polyelectrolyte multilayers (PEMs) with poly(allylamine hydrochloride) (PAH) as the top layer is studied for the deposition of vesicles of mixed lipid composition, 50:50 molar ratio of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and negatively charged 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS). PEMs are assembled with polystyrene sulfonate (PSS), poly(acrylic acid) (PAA), and alginic acid sodium salt (Alg) as polyanions. The assembly of the vesicles on the PEMs is followed by means of the quartz crystal microbalance with dissipation. Fluorescence recovery after photobleaching measurements are applied to evaluate bilayer formation. Whereas a bilayer is formed on top of PAH/PSS multilayers, the vesicles are adsorbed on top of PAH/Alg and PAH/PAA multilayers, remaining unruptured or only partially fused. The influence of the surface composition of the PEM and of the bulk properties of the film are analyzed. The phosphate ions present in phosphate-buffered saline (PBS) play a fundamental role in bilayer formation on top of PAH/PSS as they complex with PAH and render the surface potential close to zero. For PAH/PAA and PAH/Alg, PBS renders the surface negative. X-ray photoelectron spectroscopy shows that the dibasic phosphate ions from PBS complex preferentially with PAH in PAH/PAA and PAH/Alg multilayers, whereas monobasic phosphates complex with PAH in PAH/PSS. An explanation for the absence of bilayer formation on PAH/PAA and PAH/Alg is given on the basis of the different affinities of phosphate ions for PAH in combination with the different polyanions.