화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.121, No.8, 1716-1726, 2017
Theoretical Investigation of the Gas-Phase Reaction of CrO+ with Propane
Transition metal oxide cations (e.g., MO+) have been shown to oxidize small alkanes in the gas phase. The chromium oxide cation is of particular interest because it is more reactive than oxides of earlier transition metals but is more selective than oxides of later transition metals. The reaction of CrO+ with propane has been shown to produce a number of products: propanol, propene, ethene, and hydrogen. Few theoretical studies exist for reactions of simple transition metal oxide cations with larger alkanes. We have analyzed the potential energy surfaces associated with the reaction of CrO+ with propane viable reaction paths leading to each experimentally observed product using two DFT methods, B3LYP and M06-L. Energetically have been characterized. Each reaction path begins with formation of a reactive intermediate in which either an alpha-or beta-hydrogen from propane is extracted by the oxygen atom of CrO+. While pathways leading to formation of hydrogen and ethene were found to occur on a single spin surface, energetically viable pathways to forming propanol and propene require a transition from the quartet spin surface to the sextet surface. The minimum-energy crossing points between the quartet and sextet surfaces were found to be well below the energy level of the reactants and structurally resemble the initial reactive intermediates.