화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.121, No.6, 1381-1387, 2017
Tetrel Bonds in Infinite Molecular Chains by Electronic Structure Theory and Their Role for Crystal Stabilization
Intermolecular bonds play a crucial role in the rational design of crystal structures, dubbed crystal engineering. The relatively new term tetrel bonds (TBs) describes a long-known type of such interactions presently in the focus of quantum chemical cluster calculations. Here, we energetically explore the strengths and cooperativity of these interactions in infinite chains) a possible arrangement of such tetrel bonds in extended crystals, by periodic density functional theory. In the chains, the TBs are amplified due to cooperativity by up to 60%. Moreover, we computationally take apart crystals stabilized by infinite tetrel-bonded chains and assess the importance of the TBs for the crystal stabilization. Tetrel bonds can amount to 70% of the overall interaction energy within some crystals, and they can also be energetically decisive for the; taken crystal structure; their individual strengths also compete with the collective packing within the crystal structures.