Journal of Materials Science, Vol.52, No.13, 7929-7936, 2017
Effect of boundary conditions on the evolution of lattice strains in a polycrystalline austenitic stainless steel
The effect of boundary conditions (constant load, constant strain and elastic follow-up) on lattice strain evolution during creep in a polycrystalline austenitic stainless steel was studied using in situ neutron diffraction at 550 A degrees C. The lattice strains were found to remain constant under constant load control. However, under constant strain and elastic follow-up control, the lattice strains relaxed the most in the elastically softest lattice plane {200} and the least in the elastically stiffest lattice plane {111}. The intergranular stresses created between different grain families were constant during creep tests irrespective of the boundary conditions with the initial applied stresses of 250 MPa.