Journal of Catalysis, Vol.347, 197-204, 2017
Water activation and carbon monoxide coverage effects on maximum rates for low temperature water-gas shift catalysis
Linear scaling relations and Bronsted-Evans-Polanyi (BEP) relations help to elucidate trends in activation energies and adsorption energies on different metal surfaces. In this paper, Density Functional Theory (DFT) calculations available in the literature are utilized to analyze these trends and their effect on the reactivity of transition metals for the low temperature water-gas shift reaction (CO + H2O <-> CO2 + H-2) The importance of O-CO bond formation in water-gas shift is shown for metals not limited by water dissociation. In addition, the CO binding energy is shown to be an important parameter, as CO can crowd out the free sites which participate in adsorption steps, water dissociation, and carboxyl decomposition. From these results, we propose a catalyst design strategy to combine metals that adsorb O weakly, such as Au clusters or Pt nanoparticles, with supports that exhibit strong enough interactions with oxygen to be capable of easily dissociating water. (C) 2017 Elsevier Inc. All rights reserved.
Keywords:Water-gas shift;Microkinetic modeling;Scaling relations;Transition metals;Support effect;Catalyst design;Volcano plots