화학공학소재연구정보센터
International Journal of Multiphase Flow, Vol.89, 241-254, 2017
Numerical investigation of turbulent-jet primary breakup using one-dimensional turbulence
Primary breakup to form droplets at liquid surfaces is an important fundamental process to study as it determines the initial properties of the dispersed phase, which affect mixing rates, secondary breakup, droplet collisions, and flow separation within the dispersed flow region. Primary breakup can be regarded as one of the least developed model components for simulating and predicting liquid jet breakup. However, it is of paramount importance in many technical applications, e.g. fuel injection in engines and spray painting. This paper presents a numerical investigation of primary breakup of a turbulent liquid jet in still air at standard conditions using the one-dimensional turbulence (ODT) modeling framework. ODT is a stochastic model that simulates turbulent flow evolution along a notional 1D line of sight by applying instantaneous maps to represent the effect of individual turbulent eddies on property profiles. An important feature of ODT is the resolution of all relevant scales, both temporal and spatial. The restriction to one spatial dimension in ODT permits affordable high resolution of interfacial and single-phase property gradients, which is key to capturing the local behavior of the breakup process and allows simulations at high Reynolds and Weber numbers that are currently not accessible to direct numerical simulations (DNS). This paper summarizes our extensions of the ODT model to simulate geometrically simple jet breakup problems, including representations of Rayleigh wave breakup, turbulent breakup, and shear-driven breakup. Each jet breakup simulation consists of a short temporal chanriel section to initialize a turbulent velocity profile at the nozzle exit followed by an adjacent jet section. The simulations are carried out for jet exit Reynolds number of 11,500, 23,000, 46,000 and 92,000 while the Weber number is varied within the range 102-107. We present results on breakup statistics including spatial locations of droplet release, droplet sizes and liquid core length. The results on primary breakup are compared to experimental results and models. (C) 2016 Elsevier Ltd. All rights reserved.