International Journal of Control, Vol.90, No.5, 1077-1089, 2017
Control design based on dead-zone and leakage adaptive laws for artificial swarm mechanical systems
We consider the control design of artificial swarm systems with emphasis on four characteristics. First, the agent is made of mechanical components. As a result, the motion of each agent is subject to physical laws that govern mechanical systems. Second, both nonlinearity and uncertainty of the mechanical system are taken into consideration. Third, the ideal agent kinematic performance is treated as a desired d'Alembert constraint. This in turn suggests a creative way of embedding the constraint into the control design. Fourth, two types of adaptive robust control schemes are designed. They both contain leakage and dead-zone. However, one design suggests a trade-off between the amount of leakage and the size of dead-zone, in exchange for a simplified dead-zone structure.