화학공학소재연구정보센터
Experimental Heat Transfer, Vol.30, No.3, 253-265, 2017
Experimental investigation of the effect of nozzle numbers on Ranque-Hilsch vortex tube performance
The present study investigates the effects of the orifice nozzle number and the inlet pressure experimentally on the cooling performance of the counter flow-type vortex tube. The energy generation has been conducted using a stream-tek generator (model GNMD-KIT) with different numbers of nozzles (2, 3, and 6), an aspect ratio of 1:6, and an inner diameter of 7.5 mm. In the experiments, for each of the orifices, inlet pressures have been adjusted from 200-600 kPa. The energy separation investigated here focuses on the cold temperature difference and coefficient of performance for cooling. The experimental results concluded in this article prove that the greatest effect of nozzle number is for three nozzles, and hence, that nozzle number could affect the energy separation efficiently. A comparison of the present experiments with other published works has been conducted. An analytical study of the characteristics equation has been carried out to evaluate the best correlation of the ratio of cold temperature difference to the inlet temperature as a function of pressure, cold mass fraction, and nozzle number.