Energy Policy, Vol.104, 274-284, 2017
Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems
This paper aims to reveal the spatio-temporal patterns of energy consumption-related greenhouse gas (ECR-GHG) emissions in China's crop production systems (CPSs). The relevant crop production data from 31 provinces during 1997-2014 are utilized. In order to fully reflect the energy consumption and ECR-GHG emissions in CPSs, energy balance techniques are adopted from a consumption perspective. The driving factors behind ECR-GHG emissions are identified by means of a Logarithmic Mean Divisia Index analysis at both national and provincial levels. The results are as follows: (1) The yield of China's CPS is not positively correlated with energy consumption, and China's CPS has the relatively high potential to conserve energy and reduce ECRGHG emissions; (2) Most of China's provinces have experienced enormous growth in ECR-GHG emissions; however there are relatively significant regional disparities; (3) ECR-GHG emissions from CPSs were mostly derived directly from the consumption of chemical fertilizers and diesel oil; (4) Areal productivity is the determining factor in the growth of ECR-GHG emissions, whereas the emission coefficient and energy mix are the main inhibiting factors; (5) Energy intensity has not achieved its full potential to decrease ECR-GHG emissions. This study provides insights into the potential for sustainable crop production in China.
Keywords:Crop production system;Energy consumption;Greenhouse gas emissions;LMDI;Spatio-temporal characteristics