Electrochimica Acta, Vol.231, 386-395, 2017
Efficient Pt electrocatalysts supported onto flavin mononucleotideexfoliated pristine graphene for the methanol oxidation reaction
Due to its large surface area, high electrical conductivity as well as mechanical and thermal stability, pristine graphene has the potential to be an excellent support for metal nanoparticles (NPs), but the scarce amount of intrinsic chemical groups/defects in its structure that could act as anchoring sites for the NPs hinders this type of use. Here, a simple strategy based on the stabilization of pristine graphene in aqueous dispersion with the assistance of a low amount of flavin mononucleotide (FMN) is shown to yield a material that combines high electrical conductivity and abundance of extrinsic anchoring sites, so that pristine graphene-metal (Pd and Pt) NP hybrids with good dispersion and metal loading can be obtained from FMN-stabilized graphene. The activity of these hybrids towards the methanol oxidation reaction (MOR) both in acidic and alkaline media is studied by cyclic voltammetry (CV) and their stability investigated by chronoamperometry. The pristine graphene-Pt NP hybrid prepared by this simple, ecofriendly protocol is demonstrated to outperform most previously reported pristine graphene-and reduced graphene oxide-metal NP hybrids as electrocatalyst for the MOR, both in terms of catalytic activity and stability, avoiding at the same time the use of harsh chemicals or complex synthetic routes. (C) 2017 Elsevier Ltd. All rights reserved.
Keywords:fuel cell;methanol oxidation reaction;electrocatalyst;graphene;biomolecule;metal nanoparticles